Menu Close

prove-that-e-x-k-0-n-x-k-k-x-n-1-n-0-1-t-n-e-tx-dt-2-prove-that-e-x-k-0-x-k-k-




Question Number 30754 by abdo imad last updated on 25/Feb/18
prove that e^x =Σ_(k=0) ^n  (x^k /(k!)) +(x^(n+1) /(n!)) ∫_0 ^ (1−t)^n  e^(tx) dt  2) prove that  e^x = Σ_(k=0) ^(∞ )   (x^k /(k!)) .
$${prove}\:{that}\:{e}^{{x}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{x}^{{k}} }{{k}!}\:+\frac{{x}^{{n}+\mathrm{1}} }{{n}!}\:\int_{\mathrm{0}} ^{} \left(\mathrm{1}−{t}\right)^{{n}} \:{e}^{{tx}} {dt} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:{e}^{{x}} =\:\sum_{{k}=\mathrm{0}} ^{\infty\:} \:\:\frac{{x}^{{k}} }{{k}!}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *