Menu Close

Prove-that-f-5x-4-35x-3-28x-2-14x-7-is-irreducible-in-Q-x-




Question Number 179900 by Shrinava last updated on 03/Nov/22
Prove that:  f = 5x^4  + 35x^3  + 28x^2  + 14x + 7  is irreducible in  Q[x]
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{f}\:=\:\mathrm{5x}^{\mathrm{4}} \:+\:\mathrm{35x}^{\mathrm{3}} \:+\:\mathrm{28x}^{\mathrm{2}} \:+\:\mathrm{14x}\:+\:\mathrm{7}\:\:\mathrm{is}\:\mathrm{irreducible}\:\mathrm{in}\:\:\mathrm{Q}\left[\mathrm{x}\right] \\ $$
Answered by floor(10²Eta[1]) last updated on 04/Nov/22
we want a prime p such that  1) p∣35, p∣28, p∣14, p∣7  2) p∤5  3) p^2 ∤7  ∴p=7 works⇒f(x) is irreductible in Q[x]
$$\mathrm{we}\:\mathrm{want}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{p}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{p}\mid\mathrm{35},\:\mathrm{p}\mid\mathrm{28},\:\mathrm{p}\mid\mathrm{14},\:\mathrm{p}\mid\mathrm{7} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{p}\nmid\mathrm{5} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{p}^{\mathrm{2}} \nmid\mathrm{7} \\ $$$$\therefore\mathrm{p}=\mathrm{7}\:\mathrm{works}\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{irreductible}\:\mathrm{in}\:\mathrm{Q}\left[\mathrm{x}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *