Menu Close

Prove-that-f-x-ax-2-bx-c-has-no-real-roots-if-and-only-if-a-f-b-2a-gt-0-




Question Number 115876 by ZiYangLee last updated on 29/Sep/20
Prove that f(x)=ax^2 +bx+c has   no real roots if and only if a∙[f(−(b/(2a)))]>0
Provethatf(x)=ax2+bx+chasnorealrootsifandonlyifa[f(b2a)]>0
Answered by Henri Boucatchou last updated on 29/Sep/20
   • a>0,  f(x)  has  no  real  roots  iif   b^2 −4ac<0      ⇔  f(−(b/(2a)))=a(−(b/(2a)))^2 +b(−(b/(2a)))+c=(b^2 /(4a))−(b^2 /(2a))+c  =−(b^2 /(4a))+c=−((b^2 −4ac)/(4a))>0     •  a<0,  f(x)  has  no  real  solutions  iif  f(−(b/(2a)))<0  as  previosly  seen...
a>0,f(x)hasnorealrootsiifb24ac<0f(b2a)=a(b2a)2+b(b2a)+c=b24ab22a+c=b24a+c=b24ac4a>0a<0,f(x)hasnorealsolutionsiiff(b2a)<0asprevioslyseen

Leave a Reply

Your email address will not be published. Required fields are marked *