Question Number 127455 by snipers237 last updated on 29/Dec/20
$${Prove}\:{that}\:{for}\:{all}\:{n}\geqslant\mathrm{1}\: \\ $$$$\left.\mathrm{1}\left.\right){There}\:{exist}\:\:{a}_{{n}} \in\right]\mathrm{0},\mathrm{1}\left[\:{such}\:{as}\:\:\right. \\ $$$${sin}\left(\frac{\mathrm{1}}{{n}}\right)=\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{\mathrm{6}{n}^{\mathrm{3}} }{cos}\left(\frac{\mathrm{1}}{{n}}{a}_{{n}} \right) \\ $$$$\left.\mathrm{2}\right)\:{Prove}\:{that}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{10}}\: \\ $$