Menu Close

Prove-that-for-all-n-1-1-There-exist-a-n-0-1-such-as-sin-1-n-1-n-1-6n-3-cos-1-n-a-n-2-Prove-that-lim-n-a-n-1-10-




Question Number 127455 by snipers237 last updated on 29/Dec/20
Prove that for all n≥1   1)There exist  a_n ∈]0,1[ such as    sin((1/n))=(1/n)−(1/(6n^3 ))cos((1/n)a_n )  2) Prove that  lim_(n→∞)  a_n  = (1/(10))
$${Prove}\:{that}\:{for}\:{all}\:{n}\geqslant\mathrm{1}\: \\ $$$$\left.\mathrm{1}\left.\right){There}\:{exist}\:\:{a}_{{n}} \in\right]\mathrm{0},\mathrm{1}\left[\:{such}\:{as}\:\:\right. \\ $$$${sin}\left(\frac{\mathrm{1}}{{n}}\right)=\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{\mathrm{6}{n}^{\mathrm{3}} }{cos}\left(\frac{\mathrm{1}}{{n}}{a}_{{n}} \right) \\ $$$$\left.\mathrm{2}\right)\:{Prove}\:{that}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{10}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *