Menu Close

Prove-that-for-all-values-of-u-the-point-a-cosh-u-b-sinh-u-lies-on-the-hyperbola-whose-equation-is-x-2-a-2-y-2-b-2-1-And-that-the-tangent-at-that-point-is-x-a-cosh-u-




Question Number 28468 by tawa tawa last updated on 26/Jan/18
Prove that for all values of u, the point [a cosh(u) ,  b sinh(u)] lies on the   hyperbola whose equation is.     (x^2 /a^2 ) − (y^2 /b^2 ) = 1  And that the tangent at that point is :   (x/a) cosh(u)  −  (y/b) sinh(u)
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:\mathrm{u},\:\mathrm{the}\:\mathrm{point}\:\left[\mathrm{a}\:\mathrm{cosh}\left(\mathrm{u}\right)\:,\:\:\mathrm{b}\:\mathrm{sinh}\left(\mathrm{u}\right)\right]\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\: \\ $$$$\mathrm{hyperbola}\:\mathrm{whose}\:\mathrm{equation}\:\mathrm{is}.\:\:\:\:\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:−\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }\:=\:\mathrm{1} \\ $$$$\mathrm{And}\:\mathrm{that}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{at}\:\mathrm{that}\:\mathrm{point}\:\mathrm{is}\::\:\:\:\frac{\mathrm{x}}{\mathrm{a}}\:\mathrm{cosh}\left(\mathrm{u}\right)\:\:−\:\:\frac{\mathrm{y}}{\mathrm{b}}\:\mathrm{sinh}\left(\mathrm{u}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *