Menu Close

prove-that-for-any-complex-number-z-if-z-lt-1-then-Re-z-1-gt-0-




Question Number 83966 by Rio Michael last updated on 08/Mar/20
prove that for any complex number z, if    ∣z∣ < 1, then Re(z + 1) > 0
provethatforanycomplexnumberz,ifz<1,thenRe(z+1)>0
Answered by mr W last updated on 08/Mar/20
let z=a+bi  ∣z∣=(√(a^2 +b^2 ))<1  ⇒a^2 +b^2 <1  ⇒a^2 <1−b^2 ≤1  ⇒−1<a<1  ⇒0<a+1<2    Re(z+1)=Re(a+1+bi)=a+1>0
letz=a+biz∣=a2+b2<1a2+b2<1a2<1b211<a<10<a+1<2Re(z+1)=Re(a+1+bi)=a+1>0
Commented by Rio Michael last updated on 08/Mar/20
thank you sir
thankyousir
Answered by TANMAY PANACEA last updated on 08/Mar/20
z=rcosθ+irsinθ  ∣z∣=r<1  z+1  =1+rcosθ+irsinθ  ∣z+1∣  =(√((1+rcosθ)^2 +(rsinθ)^2 ))   =(√(1+2rcosθ+r^2 ))   (√(1+2rcosθ+r^2 )) >(√(1−2r+r^2 ))  when cosθ=−1  (√(1+2rcosθ+r^2 )) <(√(1+2r+r^2 ))  when cosθ=1  1+r>(√(1+2rcosθ+r^2 ))  >1−r>0  note 1−r>0
z=rcosθ+irsinθz∣=r<1z+1=1+rcosθ+irsinθz+1=(1+rcosθ)2+(rsinθ)2=1+2rcosθ+r21+2rcosθ+r2>12r+r2whencosθ=11+2rcosθ+r2<1+2r+r2whencosθ=11+r>1+2rcosθ+r2>1r>0note1r>0
Commented by Rio Michael last updated on 08/Mar/20
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *