Prove-that-for-any-real-number-x-and-odd-positive-integer-n-cos-n-x-1-2-n-1-k-0-n-1-2-C-k-n-cos-n-2k-x- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 170800 by thfchristopher last updated on 31/May/22 Provethat,foranyrealnumberxandoddpositiveintegern,cosnx=12n+1∑(n−1)/2k=0Ckncos(n−2k)x Answered by aleks041103 last updated on 04/Jun/22 cosx=eix+e−ix2cosnx=12n(eix+e−ix)n==12n(∑nk=0Ckneikxe−i(n−k)x)==12n(∑nk=0Ckneix(2k−n))∑nk=0Ckneix(2k−n)==∑(n−1)/2k=0Ckneix(2k−n)+∑nk=(n+1)/2Ckneix(2k−n)∑nk=(n+1)/2Ckneix(2k−n)letn−2j=2k−n⇒2j=2n−2k⇒j=n−k,k=n−jj1=n−n+12=n−12j2=n−n=0⇒∑nk=(n+1)/2Ckneix(2k−n)=∑(n−1)/2j=0Cn−jne−ix(2j−n)butCn−jn=Cjnchangingjtok⇒∑nk=(n+1)/2Ckneix(2k−n)=∑(n−1)/2k=0Ckne−ix(2k−n)⇒∑nk=0Ckneix(2k−n)==∑(n−1)/2k=0Ckneix(2k−n)+∑(n−1)/2k=0Ckne−ix(2k−n)==∑(n−1)/2k=0Ckn(eix(2k−n)+e−ix(2k−n))==2∑(n−1)/2k=0Ckncos((2k−n)x)⇒cosnx=12n−1∑(n−1)/2k=0Ckncos((2k−n)x)cosisevenfunctioncosnx=12n−1∑(n−1)/2k=0Ckncos((n−2k)x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-105265Next Next post: Question-39731 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.