Menu Close

Prove-that-for-any-real-number-x-and-odd-positive-integer-n-cos-n-x-1-2-n-1-k-0-n-1-2-C-k-n-cos-n-2k-x-




Question Number 170800 by thfchristopher last updated on 31/May/22
Prove that, for any real number x and odd positive integer n,         cos^n x=(1/2^(n+1) )Σ_(k=0) ^((n−1)/2) C_k ^n cos (n−2k)x
Provethat,foranyrealnumberxandoddpositiveintegern,cosnx=12n+1(n1)/2k=0Ckncos(n2k)x
Answered by aleks041103 last updated on 04/Jun/22
cosx=((e^(ix) +e^(−ix) )/2)  cos^n x=(1/2^n )(e^(ix) +e^(−ix) )^n =  =(1/2^n )(Σ_(k=0) ^n C_k ^n e^(ikx) e^(−i(n−k)x) )=  =(1/2^n )(Σ_(k=0) ^n C_k ^n e^(ix(2k−n)) )  Σ_(k=0) ^n C_k ^n e^(ix(2k−n)) =  =Σ_(k=0) ^((n−1)/2) C_k ^n e^(ix(2k−n)) +Σ_(k=(n+1)/2) ^n C_k ^n e^(ix(2k−n))   Σ_(k=(n+1)/2) ^n C_k ^n e^(ix(2k−n))   let n−2j=2k−n  ⇒2j=2n−2k⇒j=n−k, k=n−j  j_1 =n−((n+1)/2)=((n−1)/2)  j_2 =n−n=0  ⇒Σ_(k=(n+1)/2) ^n C_k ^n e^(ix(2k−n)) =Σ_(j=0) ^((n−1)/2) C_(n−j) ^n e^(−ix(2j−n))   but C_(n−j) ^n =C_j ^n   changing j to k  ⇒Σ_(k=(n+1)/2) ^n C_k ^n e^(ix(2k−n)) =Σ_(k=0) ^((n−1)/2) C_k ^n e^(−ix(2k−n))   ⇒Σ_(k=0) ^n C_k ^n e^(ix(2k−n)) =  =Σ_(k=0) ^((n−1)/2) C_k ^n e^(ix(2k−n)) +Σ_(k=0) ^((n−1)/2) C_k ^n e^(−ix(2k−n)) =  =Σ_(k=0) ^((n−1)/2) C_k ^n (e^(ix(2k−n)) +e^(−ix(2k−n)) )=  =2Σ_(k=0) ^((n−1)/2) C_k ^n cos((2k−n)x)  ⇒cos^n x=(1/2^(n−1) )Σ_(k=0) ^((n−1)/2) C_k ^n cos((2k−n)x)  cos is even function  cos^n x=(1/2^(n−1) )Σ_(k=0) ^((n−1)/2) C_k ^n cos((n−2k)x)
cosx=eix+eix2cosnx=12n(eix+eix)n==12n(nk=0Ckneikxei(nk)x)==12n(nk=0Ckneix(2kn))nk=0Ckneix(2kn)==(n1)/2k=0Ckneix(2kn)+nk=(n+1)/2Ckneix(2kn)nk=(n+1)/2Ckneix(2kn)letn2j=2kn2j=2n2kj=nk,k=njj1=nn+12=n12j2=nn=0nk=(n+1)/2Ckneix(2kn)=(n1)/2j=0Cnjneix(2jn)butCnjn=Cjnchangingjtoknk=(n+1)/2Ckneix(2kn)=(n1)/2k=0Ckneix(2kn)nk=0Ckneix(2kn)==(n1)/2k=0Ckneix(2kn)+(n1)/2k=0Ckneix(2kn)==(n1)/2k=0Ckn(eix(2kn)+eix(2kn))==2(n1)/2k=0Ckncos((2kn)x)cosnx=12n1(n1)/2k=0Ckncos((2kn)x)cosisevenfunctioncosnx=12n1(n1)/2k=0Ckncos((n2k)x)

Leave a Reply

Your email address will not be published. Required fields are marked *