Menu Close

prove-that-for-every-positivenumber-p-e-q-wee-have-p-q-4pq-




Question Number 181099 by Ari last updated on 21/Nov/22
  prove that for every   positivenumber p e q wee  have:  p+q≥(√(4pq))
$$ \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{every}\: \\ $$$$\mathrm{positivenumber}\:\mathrm{p}\:\mathrm{e}\:\mathrm{q}\:\mathrm{wee} \\ $$$$\mathrm{hav}{e}: \\ $$$${p}+{q}\geqslant\sqrt{\mathrm{4}{pq}} \\ $$
Answered by Agnibhoo98 last updated on 21/Nov/22
When p and q are positive numbers  (p − q)^2  ≥ 0  or p^2  − 2pq + q^2  ≥ 0  or p^2  − 2pq + 4pq + q^2  ≥ 4pq (Adding 4pq both side)  or p^2  + 2pq + q^2  ≥ 4pq  or (p + q)^2  ≥ 4pq  or p + q ≥ (√(4pq))     (Proved)
$$\boldsymbol{\mathrm{When}}\:\boldsymbol{{p}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{{q}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{numbers}} \\ $$$$\left({p}\:−\:{q}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{0} \\ $$$$\mathrm{or}\:{p}^{\mathrm{2}} \:−\:\mathrm{2}{pq}\:+\:{q}^{\mathrm{2}} \:\geqslant\:\mathrm{0} \\ $$$$\mathrm{or}\:{p}^{\mathrm{2}} \:−\:\mathrm{2}{pq}\:+\:\mathrm{4}{pq}\:+\:{q}^{\mathrm{2}} \:\geqslant\:\mathrm{4}{pq}\:\left(\boldsymbol{\mathrm{Adding}}\:\mathrm{4}\boldsymbol{{pq}}\:\boldsymbol{\mathrm{both}}\:\boldsymbol{\mathrm{side}}\right) \\ $$$$\mathrm{or}\:{p}^{\mathrm{2}} \:+\:\mathrm{2}{pq}\:+\:{q}^{\mathrm{2}} \:\geqslant\:\mathrm{4}{pq} \\ $$$$\mathrm{or}\:\left({p}\:+\:{q}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{4}{pq} \\ $$$$\mathrm{or}\:{p}\:+\:{q}\:\geqslant\:\sqrt{\mathrm{4}{pq}}\:\:\:\:\:\left(\boldsymbol{\mathrm{Proved}}\right) \\ $$
Commented by Ari last updated on 21/Nov/22
Thanks Mr∫!
$${Thanks}\:{Mr}\int! \\ $$
Commented by Agnibhoo98 last updated on 22/Nov/22
Another way  According to AM ≥ GM method :  ((p + q)/2) ≥ (√(pq))  or p + q ≥ 2(√(pq))  or p + q ≥ (√(4pq)) (Proved)
$$\boldsymbol{\mathrm{Another}}\:\boldsymbol{\mathrm{way}} \\ $$$$\boldsymbol{\mathrm{According}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{AM}}\:\geqslant\:\boldsymbol{\mathrm{GM}}\:\boldsymbol{\mathrm{method}}\:: \\ $$$$\frac{{p}\:+\:{q}}{\mathrm{2}}\:\geqslant\:\sqrt{{pq}} \\ $$$$\mathrm{or}\:{p}\:+\:{q}\:\geqslant\:\mathrm{2}\sqrt{{pq}} \\ $$$$\mathrm{or}\:{p}\:+\:{q}\:\geqslant\:\sqrt{\mathrm{4}{pq}}\:\left(\boldsymbol{\mathrm{Proved}}\right) \\ $$
Answered by SEKRET last updated on 22/Nov/22
((√(p ))  − (√q) )^2  ≥ 0    p+q≥ (√(4pq))
$$\left(\sqrt{\boldsymbol{\mathrm{p}}\:}\:\:−\:\sqrt{\boldsymbol{\mathrm{q}}}\:\right)^{\mathrm{2}} \:\geqslant\:\mathrm{0} \\ $$$$\:\:\boldsymbol{\mathrm{p}}+\boldsymbol{\mathrm{q}}\geqslant\:\sqrt{\mathrm{4}\boldsymbol{\mathrm{pq}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *