Menu Close

Prove-that-GCD-a-b-b-a-b-




Question Number 113101 by deArchie last updated on 11/Sep/20
Prove that GCD ((a,b),b)=(a,b)
$${Prove}\:{that}\:{GCD}\:\left(\left({a},{b}\right),{b}\right)=\left({a},{b}\right) \\ $$
Commented by MJS_new last updated on 11/Sep/20
how do you define the gcd of a number with  a pair of numbers? check the syntax
$$\mathrm{how}\:\mathrm{do}\:\mathrm{you}\:\mathrm{define}\:\mathrm{the}\:\mathrm{gcd}\:\mathrm{of}\:\mathrm{a}\:\mathrm{number}\:\mathrm{with} \\ $$$$\mathrm{a}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{numbers}?\:\mathrm{check}\:\mathrm{the}\:\mathrm{syntax} \\ $$
Commented by Rasheed.Sindhi last updated on 11/Sep/20
I think sir that it is   GCD ( GCD(a,b),b )=GCD(a,b)
$${I}\:{think}\:{sir}\:{that}\:{it}\:{is} \\ $$$$\:{GCD}\:\left(\:{GCD}\left({a},{b}\right),{b}\:\right)={GCD}\left({a},{b}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *