Menu Close

prove-that-i-0-1-x-s-1-1-x-dx-s-s-2-ln-2-ii-2x-1-2-x-1-2-x-1-2-ln-2-




Question Number 125297 by mnjuly1970 last updated on 09/Dec/20
 ::::prove  that :      i:   Ω= ∫_0 ^( 1) (x^(s−1) /(1+x))dx=ψ(s) − ψ((s/2))−ln(2)        ii: ψ(2x)=(1/2)ψ(x)+(1/2)ψ(x+(1/2))+ln(2)
::::provethat:i:Ω=01xs11+xdx=ψ(s)ψ(s2)ln(2)ii:ψ(2x)=12ψ(x)+12ψ(x+12)+ln(2)
Answered by Bird last updated on 09/Dec/20
define Ψ sir mnj
defineΨsirmnj
Commented by hatakekakashi1729gmailcom last updated on 10/Dec/20
digamma function
digammafunction
Commented by mnjuly1970 last updated on 10/Dec/20
 ψ(s)=−γ+Σ_(n=1) ^∞ ((1/n) −(1/(n+s−1)))              =−γ+∫_0 ^( 1) (((1−t^(s−1) )/(1−t)))dt           γ:= euler−mascheroni constant
ψ(s)=γ+n=1(1n1n+s1)=γ+01(1ts11t)dtγ:=eulermascheroniconstant
Commented by mnjuly1970 last updated on 10/Dec/20
thank you sir..
thankyousir..
Answered by Dwaipayan Shikari last updated on 10/Dec/20
∫_0 ^1 (x^(s−1) /(1+x))dx = Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(s+n−1) =Σ_(n≥0) ^∞ (((−1)^n )/(n+s))
01xs11+xdx=n=0(1)n01xs+n1=n0(1)nn+s
Answered by mindispower last updated on 11/Dec/20
Ω=∫_0 ^1 ((x^(s−1) −x^s )/(1−x^2 ))dx  x^2 =r  =∫_0 ^1 ((r^((s−1)/2) −r^(s/2) )/(1−r)).(1/2)r^(−(1/2)) dr  =(1/2)∫_0 ^1 ((r^((s/2)−1) −1)/(1−r))dr−(1/2)∫_0 ^1 ((r^(((s+1)/2)−1) −1)/(1−r))dr  =(1/2){−Ψ((s/2))−γ}−(1/2){−Ψ(((s+1)/2))−γ}  =(1/2){−Ψ((s/2))+Ψ(((s+1)/2))}...E  in other hand we have  Γ(x)Γ(x+(1/2))=Γ(2x).(√π).2^(1−2x)   ⇒ln(Γ(x))+ln(Γ(x+(1/2)))=lnΓ(2x)+((ln(π))/2)+(1−2x)ln(2)  tack (d/dx),bothe sid⇒  Ψ(x)+Ψ(x+(1/2))=2Ψ(2x)−2ln(2)....2  ⇒Ψ((s/2)+1)=2Ψ(s)−2ln(2)−Ψ((s/2))  E⇔  (1/2)(−Ψ((s/2))+2Ψ(s)−2ln(2)−Ψ((s/2)))  =Ψ(s)−Ψ((s/2))+ln(2)....1
Ω=01xs1xs1x2dxx2=r=01rs12rs21r.12r12dr=1201rs2111rdr1201rs+12111rdr=12{Ψ(s2)γ}12{Ψ(s+12)γ}=12{Ψ(s2)+Ψ(s+12)}EinotherhandwehaveΓ(x)Γ(x+12)=Γ(2x).π.212xln(Γ(x))+ln(Γ(x+12))=lnΓ(2x)+ln(π)2+(12x)ln(2)tackddx,bothesidΨ(x)+Ψ(x+12)=2Ψ(2x)2ln(2).2Ψ(s2+1)=2Ψ(s)2ln(2)Ψ(s2)E12(Ψ(s2)+2Ψ(s)2ln(2)Ψ(s2))=Ψ(s)Ψ(s2)+ln(2).1
Commented by mnjuly1970 last updated on 12/Dec/20
mercey sir..
merceysir..

Leave a Reply

Your email address will not be published. Required fields are marked *