prove-that-I-0-ln-x-1-e-x-dx-1-2-ln-2-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 151447 by mnjuly1970 last updated on 21/Aug/21 provethat…I:=∫0∞ln(x)1+exdx=−12ln2(2).. Answered by Lordose last updated on 21/Aug/21 I=∫0∞ln(x)1+exdx=u=e−x∫01uln(ln(1u))1+u⋅duuI=∫01ln(ln(1u))1+udu=∣∂∂a∫01lna(1u)1+udu∣a=1I(a)=∫01(ln(1u))a1+udu=x=−ln(u)∫0∞xae−x1+e−xdxI(a)=∫0∞xa∑∞n=1(−1)k+1e−kxdxI(a)=y=kx∑∞k=1(−1)k+1ka+1∫0∞yae−ydy=∑∞k=1(−1)k+1ka+1Γ(a+1)I(a)=η(a+1)Γ(a+1)I′(a)=η(a+1)Γ(a+1)ψ(a+1)+η′(a+1)Γ(a+1)I=lima→0(I′(a))Ψ(1)=−γ,η(1)=ln(2),η′(1)=γln(2)−ln2(2)2Ω=−γln(2)+γln(2)−ln2(2)2=−ln2(2)2▴▴▴∅sE Commented by mnjuly1970 last updated on 21/Aug/21 verynicemasterlordose.. Commented by Tawa11 last updated on 22/Aug/21 AndQ151641 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: The-two-roots-of-an-equation-x-3-9x-2-14x-24-0-are-in-the-ratio-3-2-Find-the-roots-Next Next post: Question-151444 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.