Menu Close

prove-that-I-0-ln-x-1-e-x-dx-1-2-ln-2-2-




Question Number 151447 by mnjuly1970 last updated on 21/Aug/21
        prove that...     I:= ∫_0 ^( ∞) (( ln (x ))/(1+ e^( x) )) dx= ((−1)/2) ln^( 2) (2) ..■
provethatI:=0ln(x)1+exdx=12ln2(2)..◼
Answered by Lordose last updated on 21/Aug/21
  I = ∫_0 ^( ∞) ((ln(x))/(1+e^x ))dx =^(u=e^(−x) ) ∫_0 ^( 1) ((uln(ln((1/u))))/(1+u))∙(du/u)  I = ∫_0 ^( 1) ((ln(ln((1/u))))/(1+u))du = ∣(∂/∂a)∫_0 ^( 1) ((ln^a ((1/u)))/(1+u))du∣_(a=1)   I(a) = ∫_0 ^( 1) (((ln((1/u)))^a )/(1+u))du =^(x=−ln(u)) ∫_0 ^( ∞) ((x^a e^(−x) )/(1+e^(−x) ))dx  I(a) = ∫_0 ^( ∞) x^a Σ_(n=1) ^∞ (−1)^(k+1) e^(−kx) dx  I(a) =^(y=kx)  Σ_(k=1) ^∞ (((−1)^(k+1) )/k^(a+1) )∫_0 ^( ∞) y^a e^(−y) dy = Σ_(k=1) ^∞ (((−1)^(k+1) )/k^(a+1) )𝚪(a+1)  I(a) = 𝛈(a+1)𝚪(a+1)  I′(a) = 𝛈(a+1)𝚪(a+1)𝛙(a+1) + 𝛈′(a+1)𝚪(a+1)  I = lim_(a→0) (I′(a))  𝚿(1)=−𝛄,𝛈(1)=ln(2), 𝛈′(1)=𝛄ln(2)−((ln^2 (2))/2)  Ω = −𝛄ln(2)+𝛄ln(2)−((ln^2 (2))/2) = −((ln^2 (2))/2) ▲▲▲  ∅sE
I=0ln(x)1+exdx=u=ex01uln(ln(1u))1+uduuI=01ln(ln(1u))1+udu=a01lna(1u)1+udua=1I(a)=01(ln(1u))a1+udu=x=ln(u)0xaex1+exdxI(a)=0xan=1(1)k+1ekxdxI(a)=y=kxk=1(1)k+1ka+10yaeydy=k=1(1)k+1ka+1Γ(a+1)I(a)=η(a+1)Γ(a+1)I(a)=η(a+1)Γ(a+1)ψ(a+1)+η(a+1)Γ(a+1)I=lima0(I(a))Ψ(1)=γ,η(1)=ln(2),η(1)=γln(2)ln2(2)2Ω=γln(2)+γln(2)ln2(2)2=ln2(2)2sE
Commented by mnjuly1970 last updated on 21/Aug/21
very nice master lordose..
verynicemasterlordose..
Commented by Tawa11 last updated on 22/Aug/21
And    Q151641
AndQ151641

Leave a Reply

Your email address will not be published. Required fields are marked *