Menu Close

Prove-that-i-1-n-1-i-2-i-gt-ln-n-1-




Question Number 184062 by CrispyXYZ last updated on 02/Jan/23
Prove that  Σ_(i=1) ^n  (1/( (√(i^2 +i)))) > ln(n+1)
Provethatni=11i2+i>ln(n+1)
Answered by mr W last updated on 02/Jan/23
things to know:  1)  ((a+b)/2)≥(√(ab))  (1/( (√(ab))))≥(2/(a+b))  2)  f(x)=2((√(x+1))−1)−ln (x+1)  f(0)=0  f′(x)=(1/( (√(x+1))))(1−(1/( (√(x+1)))))>0  it means for x≥0 f(x) is strictly  increasing,i.e. f(x)>0  ⇒2((√(x+1))−1)>ln (x+1)    Σ_(i=1) ^n (1/( (√(i^2 +i))))  =Σ_(i=1) ^n (1/( (√(i(i+1)))))  >Σ_(k=1) ^n ((2/( (√i)+(√(i+1)))))        see 1) above  =2Σ_(k=1) ^n ((√(i+1))−(√i))  =2((√(n+1))−1)  >ln (n+1) ✓              see 2) above
thingstoknow:1)a+b2ab1ab2a+b2)f(x)=2(x+11)ln(x+1)f(0)=0f(x)=1x+1(11x+1)>0itmeansforx0f(x)isstrictlyincreasing,i.e.f(x)>02(x+11)>ln(x+1)ni=11i2+i=ni=11i(i+1)>nk=1(2i+i+1)see1)above=2nk=1(i+1i)=2(n+11)>ln(n+1)see2)above

Leave a Reply

Your email address will not be published. Required fields are marked *