Menu Close

prove-that-i-1-n-j-0-p-i-j-n-n-1-n-2-n-p-1-p-2-




Question Number 32276 by abdo imad last updated on 22/Mar/18
prove that Σ_(i=1) ^n  (Π_(j=0) ^p (i+j))=((n(n+1)(n+2)...(n+p+1))/(p+2))
$${prove}\:{that}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\left(\prod_{{j}=\mathrm{0}} ^{{p}} \left({i}+{j}\right)\right)=\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left({n}+{p}+\mathrm{1}\right)}{{p}+\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *