Menu Close

prove-that-i-1-n-x-i-y-i-i-1-n-x-i-2-1-2-i-1-n-y-i-2-1-2-x-i-and-y-i-reals-0-




Question Number 94654 by msup by abdo last updated on 20/May/20
prove that Σ_(i=1) ^n  x_i y_i ≤(Σ_(i=1) ^n x_i ^2 )^(1/2) (Σ_(i=1) ^n y_i ^2 )^(1/2)   x_i  and y_i  reals ≥0
$${prove}\:{that}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:{x}_{{i}} {y}_{{i}} \leqslant\left(\sum_{{i}=\mathrm{1}} ^{{n}} {x}_{{i}} ^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\sum_{{i}=\mathrm{1}} ^{{n}} {y}_{{i}} ^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${x}_{{i}} \:{and}\:{y}_{{i}} \:{reals}\:\geqslant\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *