Menu Close

prove-that-i-n-0-1-n-n-1-2-cosh-n-1-2-pi-pi-4-ii-0-1-sin-pi-x-x-x-1-x-1-x-dx-1-x-pi-4-




Question Number 163002 by mnjuly1970 last updated on 03/Jan/22
     prove that     i:Σ_(n=0) ^∞  (((−1 )^( n) )/((n +(1/2))cosh(n+(1/2))π)) =(π/4)    ii: ∫_0 ^( 1) (( sin( π x ))/(x^( x) ( 1−x )^( 1−x) )) (dx/(1+x)) =(π/4)        −−−
$$ \\ $$$$\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:{i}:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\:\right)^{\:{n}} }{\left({n}\:+\frac{\mathrm{1}}{\mathrm{2}}\right){cosh}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\pi}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}\left(\:\pi\:{x}\:\right)}{{x}^{\:{x}} \left(\:\mathrm{1}−{x}\:\right)^{\:\mathrm{1}−{x}} }\:\frac{{dx}}{\mathrm{1}+{x}}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:−−− \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *