Menu Close

Prove-that-i-n-0-n-2-n-2e-ii-n-0-n-3-n-5e-iii-n-0-n-4-n-15e-




Question Number 24540 by Tinkutara last updated on 20/Nov/17
Prove that  (i) Σ_(n=0) ^∞ (n^2 /(n!))=2e.  (ii) Σ_(n=0) ^∞ (n^3 /(n!))=5e.  (iii) Σ_(n=0) ^∞ (n^4 /(n!))=15e.
Provethat(i)n=0n2n!=2e.(ii)n=0n3n!=5e.(iii)n=0n4n!=15e.
Commented by prakash jain last updated on 20/Nov/17
Write a polynomial in n P(n) of  degree k as  P(n)=a_0 +a_1 n+a_2 n(n−1)+..+a_k n(n−1)...(n−k+1)  solve for a_0 ,..a_k   and continue as in case of n^2  in answer
WriteapolynomialinnP(n)ofdegreekasP(n)=a0+a1n+a2n(n1)+..+akn(n1)(nk+1)solvefora0,..akandcontinueasincaseofn2inanswer
Answered by prakash jain last updated on 20/Nov/17
n^2 =n+n(n−1)  Σ_(n=0) ^∞ ((n+n(n−1))/(n!))  =Σ_(n=1) ^∞ (1/((n−1)!))+Σ_(n=2) ^∞ (1/((n−2)!))  =e+e=2e
n2=n+n(n1)n=0n+n(n1)n!=n=11(n1)!+n=21(n2)!=e+e=2e
Commented by Tinkutara last updated on 21/Nov/17
Thank you very much Sir!
ThankyouverymuchSir!
Answered by ajfour last updated on 20/Nov/17
(i)     xe^x =x+(x^2 /(1!))+(x^3 /(2!))+(x^4 /(3!))+....       (d/dx)(xe^x ) = 1 +((2x)/(1!))  + ((3x^2 )/(2!))+ ((4x^3 )/(3!))+...  ⇒ e^x +xe^x  =(1^2 /(1!))+((2^2 x)/(2!))+((3^2 x^2 )/(3!))+((4^2 x^3 )/(4!))+..  With x=1  we get      2e = Σ_(n=0) ^∞  (n^2 /(n!)) .
(i)xex=x+x21!+x32!+x43!+.ddx(xex)=1+2x1!+3x22!+4x33!+ex+xex=121!+22x2!+32x23!+42x34!+..Withx=1weget2e=n=0n2n!.
Commented by Tinkutara last updated on 21/Nov/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *