Menu Close

Prove-that-I-n-1-2-n-1-pi-4npi-xcos-x-2-dx-2-pi-2-np-




Question Number 167977 by LEKOUMA last updated on 30/Mar/22
Prove that  I_n =(1/2^(n+1) )∫_π ^(4nπ) xcos (x/2)dx=((2−π)/2^(np) )
$${Prove}\:{that} \\ $$$${I}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} }\int_{\pi} ^{\mathrm{4}{n}\pi} {x}\mathrm{cos}\:\frac{{x}}{\mathrm{2}}{dx}=\frac{\mathrm{2}−\pi}{\mathrm{2}^{{np}} } \\ $$
Answered by mindispower last updated on 01/Apr/22
wher is p?
$${wher}\:{is}\:{p}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *