Menu Close

Prove-that-if-A-B-and-C-are-the-midpoints-of-the-sides-BC-CA-and-AB-respectively-then-AA-BB-CC-lt-AB-BC-CA-




Question Number 13888 by Tinkutara last updated on 24/May/17
Prove that if A′, B′ and C′ are the  midpoints of the sides BC, CA and AB,  respectively, then  AA′ + BB′ + CC′ < AB + BC + CA
ProvethatifA,BandCarethemidpointsofthesidesBC,CAandAB,respectively,thenAA+BB+CC<AB+BC+CA
Commented by Tinkutara last updated on 24/May/17
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/May/17
AG+BG>AB⇒(2/3)(AA^′ +BB^′ )>AB  BG+GC>BC⇒(2/3)(BB^′ +CC^′ )>BC  AG+GC>AC⇒(2/3)(AA^′ +CC^′ )>AC  ⇒1)AB+BC+CA<(4/3)(AA^′ +BB^′ +CC^′ )  2)((∣AB−AC∣)/2)<AA^′ <((AB+AC)/2)  3)a(m_a ^2 +(a/2).(a/2))=b^2 .(a/2)+c^2 .(a/2)(Estewart′s teorem)  ⇒m_a ^2 +(a^2 /4)=((b^2 +c^2 )/2)⇒m_a ^2 =((2(b^2 +c^2 )−a^2 )/4)  =((2(b^2 +c^2 )−(b^2 +c^2 −2bc.cosA))/4)=(1/4)(b^2 +c^2 +2bc.cosA)=  =(1/4)(b^2 +c^2 +2bc.cosA)<(1/4)(b^2 +c^2 +2bc)=  =(1/4)(b+c)^2 ⇒m_a <(1/2)(b+c)  similarly:⇒m_b <(1/2)(a+c),m_c <(1/2)(a+b)  ⇒m_a +m_b +m_c <(1/2)(2a+2b+2c)=a+b+c  ⇒m_a +m_b +m_c <a+b+c   .■  4)if: m_a =((b+c)/2)⇒((2(b^2 +c^2 )−a^2 )/4)=((b^2 +c^2 +2bc)/4)  ⇒b^2 +c^2 −2bc=a^2 ⇒(b−c)^2 =a^2 ⇒b−c=a(impossible)  or:b^2 +c^2 −2bc=b^2 +c^2 −2bc.cosA  ⇒cosA=1⇒∡A=0 (impossible )  so: m_a ≰(1/2)(b+c) and: m_a <(1/2)(b+c) .  5)A=90^° ⇒4m_a ^2 =b^2 +c^2 =a^2 ⇒m_a =(a/2).      A=120^° ⇒4m_a ^2 =b^2 +c^2 −bc      A=60⇒   4m_a ^2 =b^2 +c^2 +bc  6)A=90,B=60,C=30  ⇒4(m_a ^2 +m_b ^2 +m_c ^2 )=a^2 +a^2 +c^2 +ac+a^2 +b^2 +(√3)ab=  =4a^2 +(√3)a(b+c).  7)A=90,b=c⇒Σm_a ^2 =4a^2 +2(√2)ab .^   8)BC^2 =BG^2 +GC^2 −2BG.GC.cosBG^� C  ∡BGC=ϕ⇒a^2 =(4/9)m_b ^2 +(4/9)m_c ^2 −2(2/3)m_b .(2/3)m_c cosϕ  ⇒(9/4)a^2 =m_b ^2 +m_c ^2 −2m_b .m_c .cosϕ  ϕ=90⇒(9/4)a^2 =((2(a^2 +c^2 )−b^2 )/4)+((2(a^2 +b^2 )−c^2 )/4)⇒  ⇒(if:m_b ⊥m_c )⇒(5a^2 =b^2 +c^2 ),(m_a =(3/2)a)  9)AB⊥AC⇒m_b ^2 =((2(a^2 +c^2 )−b^2 )/4)=((b^2 +2c^2 )/4)                        m_c ^2 =((2(a^2 +b^2 )−c^2 )/4)=((2b^2 +c^2 )/4)  ⇒m_b ^2 +m_c ^2 =(3/4)(b^2 +c^2 )=(3/4)a^2 =3m_a ^2   ⇒ { ((b⊥c⇒      m_b ^2 +m_c ^2 =3m_a ^2 ,m_a =(1/2)a .)),((m_b ⊥m_c ⇒b^2 +c^2 =5a^2 ,m_a =(3/2)a .)) :}
AG+BG>AB23(AA+BB)>ABBG+GC>BC23(BB+CC)>BCAG+GC>AC23(AA+CC)>AC1)AB+BC+CA<43(AA+BB+CC)2)ABAC2<AA<AB+AC23)a(ma2+a2.a2)=b2.a2+c2.a2(Estewartsteorem)ma2+a24=b2+c22ma2=2(b2+c2)a24=2(b2+c2)(b2+c22bc.cosA)4=14(b2+c2+2bc.cosA)==14(b2+c2+2bc.cosA)<14(b2+c2+2bc)==14(b+c)2ma<12(b+c)similarly:⇒mb<12(a+c),mc<12(a+b)ma+mb+mc<12(2a+2b+2c)=a+b+cma+mb+mc<a+b+c.◼4)if:ma=b+c22(b2+c2)a24=b2+c2+2bc4b2+c22bc=a2(bc)2=a2bc=a(impossible)or:b2+c22bc=b2+c22bc.cosAcosA=1A=0(impossible)so:ma12(b+c)and:ma<12(b+c).5)A=90°4ma2=b2+c2=a2ma=a2.A=120°4ma2=b2+c2bcA=604ma2=b2+c2+bc6)A=90,B=60,C=304(ma2+mb2+mc2)=a2+a2+c2+ac+a2+b2+3ab==4a2+3a(b+c).7)A=90,b=cΣma2=4a2+22ab.8)BC2=BG2+GC22BG.GC.cosBGCBGC=φa2=49mb2+49mc2223mb.23mccosφ94a2=mb2+mc22mb.mc.cosφφ=9094a2=2(a2+c2)b24+2(a2+b2)c24(if:mbmc)(5a2=b2+c2),(ma=32a)9)ABACmb2=2(a2+c2)b24=b2+2c24mc2=2(a2+b2)c24=2b2+c24mb2+mc2=34(b2+c2)=34a2=3ma2{bcmb2+mc2=3ma2,ma=12a.mbmcb2+c2=5a2,ma=32a.
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/May/17
in case of:∡AGB=∡BGC=∡AGC  show that:  1) S_(ABC) =((√3)/(12)).(a^2 +b^2 +c^2 )  2)(a/h_a )+(b/h_b )+(c/h_c )=2(√3)  .  (h_a =altitude from A^�  to BC)
incaseof:AGB=BGC=AGCshowthat:1)SABC=312.(a2+b2+c2)2)aha+bhb+chc=23.(ha=altitudefromAtoBC)
Answered by mrW1 last updated on 24/May/17
AA′=(1/2)(√(AB^2 +AC^2 +2×AB×AC×cos ∠A))  <(1/2)(√(AB^2 +AC^2 +2×AB×AC))   =(1/2)(√((AB+AC)^2 ))=(1/2)(AB+AC)    AA′<(1/2)(AB+AC)  BB′<(1/2)(BA+BC)  CC′<(1/2)(CB+CA)  ⇒AA′ + BB′ + CC′ < AB + BC + CA
AA=12AB2+AC2+2×AB×AC×cosA<12AB2+AC2+2×AB×AC=12(AB+AC)2=12(AB+AC)AA<12(AB+AC)BB<12(BA+BC)CC<12(CB+CA)AA+BB+CC<AB+BC+CA
Commented by mrW1 last updated on 24/May/17
You can also prove like this:  since BA′=A′C  ⇒A′A′′=A′A′′′  AA′′<AC  AA′′′<AB  AA′=(1/2)(AA′′+AA′′′)<(1/2)(AC+AB)
Youcanalsoprovelikethis:sinceBA=ACAA=AAAA<ACAA<ABAA=12(AA+AA)<12(AC+AB)
Commented by mrW1 last updated on 24/May/17
Using law of cosines we get:  AB^2 =BA′^2 +AA′^2 −2×BA′×AA′×cos ∠AA′B    ...(i)    AC^2 =CA′^2 +AA′^2 −2×CA′×AA′×cos ∠AA′C  AC^2 =CA′^2 +AA′^2 −2×CA′×AA′×cos (180°−∠AA′B)  AC^2 =CA′^2 +AA′^2 +2×CA′×AA′×cos ∠AA′B  AC^2 =CA′^2 +AA′^2 +2×BA′×AA′×cos ∠AA′B   ...(ii)    (i)+(ii):  AB^2 +AC^2 =BA′^2 +CA′^2 +2×AA′^2   AB^2 +AC^2 =(((BC)/2))^2 +(((BC)/2))^2 +2×AA′^2   AB^2 +AC^2 =((BC^2 )/2)+2×AA′^2   AA′^2 =(1/2)(AB^2 +AC^2 −((BC^2 )/2))   ...(iii)    BC^2 =AB^2 +AC^2 −2×AB×AC×cos ∠A  into (iii):  AA′^2 =(1/4)(AB^2 +AC^2 +2×AB×AC×cos ∠A)   ...(iii)  ⇒AA′=(1/2)(√(AB^2 +AC^2 +2×AB×AC×cos ∠A))
Usinglawofcosinesweget:AB2=BA2+AA22×BA×AA×cosAAB(i)AC2=CA2+AA22×CA×AA×cosAACAC2=CA2+AA22×CA×AA×cos(180°AAB)AC2=CA2+AA2+2×CA×AA×cosAABAC2=CA2+AA2+2×BA×AA×cosAAB(ii)(i)+(ii):AB2+AC2=BA2+CA2+2×AA2AB2+AC2=(BC2)2+(BC2)2+2×AA2AB2+AC2=BC22+2×AA2AA2=12(AB2+AC2BC22)(iii)BC2=AB2+AC22×AB×AC×cosAinto(iii):AA2=14(AB2+AC2+2×AB×AC×cosA)(iii)AA=12AB2+AC2+2×AB×AC×cosA
Commented by ajfour last updated on 24/May/17
how nice !
hownice!
Commented by mrW1 last updated on 24/May/17
Commented by ajfour last updated on 24/May/17
all tbe more better !
alltbemorebetter!
Commented by Rishabh#1 last updated on 24/May/17
How did u get  AA′=(1/2)(√(AB^2 +AC^2 +2×AB×AC×cos ∠A))
HowdidugetAA=12AB2+AC2+2×AB×AC×cosA
Commented by Tinkutara last updated on 25/May/17
Thanks.
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *