Menu Close

Prove-that-If-f-x-is-Riemann-integrable-on-a-b-and-M-gt-0-s-t-x-a-b-f-x-0-and-f-x-lt-M-and-1-f-x-lt-M-then-1-f-x-is-Riemann-integrable-on-a-b-




Question Number 26142 by moxhix last updated on 21/Dec/17
Prove that   If f(x) is Riemann integrable on [a,b] and       ∃M>0 s.t. ∀x∈[a,b] (f(x)≠0 and ∣f(x)∣<M and ∣(1/(f(x)))∣<M),  then (1/(f(x))) is Riemann integrable on [a,b].
$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{Riemann}\:\mathrm{integrable}\:\mathrm{on}\:\left[{a},{b}\right]\:\mathrm{and} \\ $$$$\:\:\:\:\:\exists{M}>\mathrm{0}\:{s}.{t}.\:\forall{x}\in\left[{a},{b}\right]\:\left({f}\left({x}\right)\neq\mathrm{0}\:{and}\:\mid{f}\left({x}\right)\mid<{M}\:{and}\:\mid\frac{\mathrm{1}}{{f}\left({x}\right)}\mid<{M}\right), \\ $$$$\mathrm{then}\:\frac{\mathrm{1}}{{f}\left({x}\right)}\:\mathrm{is}\:\mathrm{Riemann}\:\mathrm{integrable}\:\mathrm{on}\:\left[{a},{b}\right]. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *