Menu Close

prove-that-if-n-N-n-gt-1-and-n-is-odd-then-1-n-n-1-n-is-divisible-by-n-dont-use-modn-




Question Number 192220 by gatocomcirrose last updated on 12/May/23
  prove that if n∈N, n>1 and n is odd then   1^n +...+(n−1)^n  is divisible by n  (dont use ≡(modn))
provethatifnN,n>1andnisoddthen1n++(n1)nisdivisiblebyn(dontuse(modn))
Commented by AST last updated on 12/May/23
It follows from the fact that a^n +b^n  is divisible   by a+b when n is odd.  {1^n +(n−1)^n }+{2^n +(n−2)^n }+...+{(((n−1)/2))^n +(((n+1)/2))^n }
Itfollowsfromthefactthatan+bnisdivisiblebya+bwhennisodd.{1n+(n1)n}+{2n+(n2)n}++{(n12)n+(n+12)n}
Commented by gatocomcirrose last updated on 12/May/23
ohhhh yeahh thanks bro
ohhhhyeahhthanksbro
Answered by Frix last updated on 12/May/23
1^n +(n−1)^n =1^n +n×(...)−1^n =n×(...)  2^n +(n−2)^n =2^n +n×(...)−2^n =n×(...)  ...  You get tbe idea?
1n+(n1)n=1n+n×()1n=n×()2n+(n2)n=2n+n×()2n=n×()Yougettbeidea?
Commented by gatocomcirrose last updated on 12/May/23
yeah thank you!
yeahthankyou!

Leave a Reply

Your email address will not be published. Required fields are marked *