Prove-that-if-the-lengths-of-a-triangle-form-an-arithmetic-progression-then-the-centre-of-incircle-and-the-centroid-of-triangle-lie-on-a-line-parallel-to-the-side-of-middle-length-of-the-triangle- Tinku Tara June 4, 2023 Geometry 0 Comments FacebookTweetPin Question Number 62380 by ajfour last updated on 20/Jun/19 Provethatifthelengthsofatriangleformanarithmeticprogression,thenthecentreofincircleandthecentroidoftrianglelieonalineparalleltothesideofmiddlelengthofthetriangle. Answered by mr W last updated on 20/Jun/19 letthemiddlesidelengthbea,thentheothertwosidesarea−danda+d.theperimeterofthetriangleisp=a+(a−d)+(a+d)=3a.letΔbetheareaofthetriangle,theradiusoftheincircleisr,12pr=Δ⇒r=2Δp=2Δ3aleth=altitudeovermiddleside12ah=Δ⇒h=2Δathedistanceofthecentroidtothemiddlesideish3=2Δ3a,whichisequaltotheradiusofincircle.thatmeansthecenterofincircleandthecentroidhavethesamedistancetothemiddleside,i.e.theylieonalineparalleltothemiddleside. Commented by ajfour last updated on 20/Jun/19 ThankyouSir,verygoodapproach! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-1-3-2-1-3-5-3-1-3-5-7-4-1-3-5-7-9-Next Next post: find-F-a-0-1-1-a-2-t-2-1-t-2-dt-for-background-see-Q127811- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.