Menu Close

Prove-that-if-u-f-x-3-y-3-where-f-is-arbitry-function-then-x-2-u-y-y-2-u-x-




Question Number 191867 by Spillover last updated on 02/May/23
Prove that if   u=f(x^3 +y^3 ),where f  is arbitry  function then    x^2  (∂u/∂y) = y^2 (∂u/∂x)
$${Prove}\:{that}\:{if}\:\:\:{u}={f}\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} \right),{where}\:{f}\:\:{is}\:{arbitry} \\ $$$${function}\:{then}\:\:\:\:{x}^{\mathrm{2}} \:\frac{\partial{u}}{\partial{y}}\:=\:{y}^{\mathrm{2}} \frac{\partial{u}}{\partial{x}} \\ $$
Answered by qaz last updated on 02/May/23
∂u=f ′(3x^2 dx+3y^2 dy)  ⇒(∂u/∂x)=3x^2 f ′         (∂u/∂y)=3y^2 f ′  ⇒x^2 (∂u/∂y)=y^2 (∂u/∂x)
$$\partial{u}={f}\:'\left(\mathrm{3}{x}^{\mathrm{2}} {dx}+\mathrm{3}{y}^{\mathrm{2}} {dy}\right) \\ $$$$\Rightarrow\frac{\partial{u}}{\partial{x}}=\mathrm{3}{x}^{\mathrm{2}} {f}\:'\:\:\:\:\:\:\:\:\:\frac{\partial{u}}{\partial{y}}=\mathrm{3}{y}^{\mathrm{2}} {f}\:' \\ $$$$\Rightarrow{x}^{\mathrm{2}} \frac{\partial{u}}{\partial{y}}={y}^{\mathrm{2}} \frac{\partial{u}}{\partial{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *