Menu Close

Prove-that-if-u-f-x-3-y-3-where-f-is-arbitry-function-then-x-2-u-y-y-2-u-x-




Question Number 191867 by Spillover last updated on 02/May/23
Prove that if   u=f(x^3 +y^3 ),where f  is arbitry  function then    x^2  (∂u/∂y) = y^2 (∂u/∂x)
Provethatifu=f(x3+y3),wherefisarbitryfunctionthenx2uy=y2ux
Answered by qaz last updated on 02/May/23
∂u=f ′(3x^2 dx+3y^2 dy)  ⇒(∂u/∂x)=3x^2 f ′         (∂u/∂y)=3y^2 f ′  ⇒x^2 (∂u/∂y)=y^2 (∂u/∂x)
u=f(3x2dx+3y2dy)ux=3x2fuy=3y2fx2uy=y2ux

Leave a Reply

Your email address will not be published. Required fields are marked *