Menu Close

Prove-that-if-z-cos-6-i-sin-6-then-1-z-2-1-iz-z-4-1-iz-3-z-8-1-iz-7-z-16-1-0-




Question Number 19455 by Tinkutara last updated on 11/Aug/17
Prove that if z = cos 6° + i sin 6°, then  (1/(z^2  + 1)) − ((iz)/(z^4  − 1)) + ((iz^3 )/(z^8  − 1)) + ((iz^7 )/(z^(16)  − 1)) = 0.
Provethatifz=cos6°+isin6°,then1z2+1izz41+iz3z81+iz7z161=0.
Answered by ajfour last updated on 16/Aug/17
z^(15) =(cos 6°+isin 6°)^(15) =i , so  l.h.s.=((z^2 −1)/(z^4 −1))−((iz)/(z^4 −1))+((iz^3 )/(z^8 −1))+((iz^7 )/(i(z+i)))  =((z^2 −iz+i^2 )/(z^4 −1))+((iz^4 −z^3 +i−z^7 )/((z^8 −1)(z+i)))  =((z^3 +i^3 )/((z^4 −1)(z+i)))+(((z^4 +1)(i−z^3 ))/((z^8 −1)(z+i)))  =((z^3 −i)/((z^4 −1)(z+i)))+(((i−z^3 ))/((z^4 −1)(z+i))) =0 .
z15=(cos6°+isin6°)15=i,sol.h.s.=z21z41izz41+iz3z81+iz7i(z+i)=z2iz+i2z41+iz4z3+iz7(z81)(z+i)=z3+i3(z41)(z+i)+(z4+1)(iz3)(z81)(z+i)=z3i(z41)(z+i)+(iz3)(z41)(z+i)=0.
Commented by Tinkutara last updated on 16/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *