Menu Close

Prove-that-if-z-cos-6-i-sin-6-then-1-z-2-1-iz-z-4-1-iz-3-z-8-1-iz-7-z-16-1-0-




Question Number 19455 by Tinkutara last updated on 11/Aug/17
Prove that if z = cos 6° + i sin 6°, then  (1/(z^2  + 1)) − ((iz)/(z^4  − 1)) + ((iz^3 )/(z^8  − 1)) + ((iz^7 )/(z^(16)  − 1)) = 0.
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:{z}\:=\:\mathrm{cos}\:\mathrm{6}°\:+\:{i}\:\mathrm{sin}\:\mathrm{6}°,\:\mathrm{then} \\ $$$$\frac{\mathrm{1}}{{z}^{\mathrm{2}} \:+\:\mathrm{1}}\:−\:\frac{{iz}}{{z}^{\mathrm{4}} \:−\:\mathrm{1}}\:+\:\frac{{iz}^{\mathrm{3}} }{{z}^{\mathrm{8}} \:−\:\mathrm{1}}\:+\:\frac{{iz}^{\mathrm{7}} }{{z}^{\mathrm{16}} \:−\:\mathrm{1}}\:=\:\mathrm{0}. \\ $$
Answered by ajfour last updated on 16/Aug/17
z^(15) =(cos 6°+isin 6°)^(15) =i , so  l.h.s.=((z^2 −1)/(z^4 −1))−((iz)/(z^4 −1))+((iz^3 )/(z^8 −1))+((iz^7 )/(i(z+i)))  =((z^2 −iz+i^2 )/(z^4 −1))+((iz^4 −z^3 +i−z^7 )/((z^8 −1)(z+i)))  =((z^3 +i^3 )/((z^4 −1)(z+i)))+(((z^4 +1)(i−z^3 ))/((z^8 −1)(z+i)))  =((z^3 −i)/((z^4 −1)(z+i)))+(((i−z^3 ))/((z^4 −1)(z+i))) =0 .
$${z}^{\mathrm{15}} =\left(\mathrm{cos}\:\mathrm{6}°+{i}\mathrm{sin}\:\mathrm{6}°\right)^{\mathrm{15}} ={i}\:,\:{so} \\ $$$${l}.{h}.{s}.=\frac{{z}^{\mathrm{2}} −\mathrm{1}}{{z}^{\mathrm{4}} −\mathrm{1}}−\frac{{iz}}{{z}^{\mathrm{4}} −\mathrm{1}}+\frac{{iz}^{\mathrm{3}} }{{z}^{\mathrm{8}} −\mathrm{1}}+\frac{{iz}^{\mathrm{7}} }{{i}\left({z}+{i}\right)} \\ $$$$=\frac{{z}^{\mathrm{2}} −{iz}+{i}^{\mathrm{2}} }{{z}^{\mathrm{4}} −\mathrm{1}}+\frac{{iz}^{\mathrm{4}} −{z}^{\mathrm{3}} +{i}−{z}^{\mathrm{7}} }{\left({z}^{\mathrm{8}} −\mathrm{1}\right)\left({z}+{i}\right)} \\ $$$$=\frac{{z}^{\mathrm{3}} +{i}^{\mathrm{3}} }{\left({z}^{\mathrm{4}} −\mathrm{1}\right)\left({z}+{i}\right)}+\frac{\left({z}^{\mathrm{4}} +\mathrm{1}\right)\left({i}−{z}^{\mathrm{3}} \right)}{\left({z}^{\mathrm{8}} −\mathrm{1}\right)\left({z}+{i}\right)} \\ $$$$=\frac{{z}^{\mathrm{3}} −{i}}{\left({z}^{\mathrm{4}} −\mathrm{1}\right)\left({z}+{i}\right)}+\frac{\left({i}−{z}^{\mathrm{3}} \right)}{\left({z}^{\mathrm{4}} −\mathrm{1}\right)\left({z}+{i}\right)}\:=\mathrm{0}\:. \\ $$
Commented by Tinkutara last updated on 16/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *