Menu Close

Prove-that-in-ABC-a-3-cos-B-C-b-3-cos-C-A-c-3-cos-A-B-3abc-




Question Number 15888 by Tinkutara last updated on 15/Jun/17
Prove that in ΔABC, a^3  cos (B − C) +  b^3  cos (C − A) + c^3  cos (A − B) = 3abc
ProvethatinΔABC,a3cos(BC)+b3cos(CA)+c3cos(AB)=3abc
Answered by ajfour last updated on 15/Jun/17
Commented by ajfour last updated on 15/Jun/17
 In ΔABC Join B to D sucb that  ∠ABD=∠C  then ΔADB ∼ΔABC  cos (B−C)=((ka^2 +a^2 −(b−kc)^2 )/(2ka^2 ))   side  AB =c =kb  so   k=c/b    cos (B−C)=((((a^2 c^2 )/b^2 )+a^2 −(b−(c^2 /b))^2 )/((2a^2 c)/b))   cos (B−C)=((a^2 c^2 +a^2 b^2 −(b^2 −c^2 )^2 )/(2a^2 bc))  a^3 cos (B−C)=((a^2 [a^2 c^2 +a^2 b^2 −(b^2 −c^2 )^2 ])/(2abc))  similarly  b^3 cos (C−A)=((b^2 [b^2 a^2 +b^2 c^2 −(c^2 −a^2 )^2 ])/(2abc))  c^3 cos (A−B)=((c^2 [c^2 b^2 +c^2 a^2 −(a^2 −b^2 )^2 ])/(2abc))  summing them up, we get  Σa^3 cos (B−C)= ((6a^2 b^2 c^2 )/(2abc)) = 3abc .
InΔABCJoinBtoDsucbthatABD=CthenΔADBΔABCcos(BC)=ka2+a2(bkc)22ka2sideAB=c=kbsok=c/bcos(BC)=a2c2b2+a2(bc2b)22a2cbcos(BC)=a2c2+a2b2(b2c2)22a2bca3cos(BC)=a2[a2c2+a2b2(b2c2)2]2abcsimilarlyb3cos(CA)=b2[b2a2+b2c2(c2a2)2]2abcc3cos(AB)=c2[c2b2+c2a2(a2b2)2]2abcsummingthemup,wegetΣa3cos(BC)=6a2b2c22abc=3abc.
Commented by Tinkutara last updated on 15/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *