Menu Close

prove-that-k-0-k-n-cos-2-kx-n-1-2-sin-n-1-x-cos-nx-2-sinx-x-from-R-kpi-k-Z-then-find-the-value-of-integral-0-pi-sin-n-1-x-cos-nx-sinx-dx-




Question Number 26242 by abdo imad last updated on 22/Dec/17
prove that  Σ_(k=0) ^(k=n)   cos^2 (kx)= ((n+1)/2)  + ((sin((n+1)x)cos(nx))/(2 sinx))  x from R−{ kπ.kεZ}then find the value of integral  ∫_0 ^π   ((sin((n+1)x)cos(nx))/(sinx))dx
provethatk=0k=ncos2(kx)=n+12+sin((n+1)x)cos(nx)2sinxxfromR{kπ.kεZ}thenfindthevalueofintegral0πsin((n+1)x)cos(nx)sinxdx
Commented by abdo imad last updated on 28/Dec/17
Σ_(k=0) ^(k=n)  cos^2 (kx)=(1/2) Σ_(k=0) ^(k=n ) (1+cos(2kx))  = ((n+1)/2)+ (1/2) Σ_(k=0) ^n cos(2kx) but    Σ_(k=0) ^(k=n) cos(2kx) =Re(  Σ_(k=0) ^(k=n)  e^(i2kx)  )  = Re(((1−e^(i2(n+1)x) )/(1− e^(i2x) ))) but   ((1−e^(i2(n+1)x) )/(1−e^(i2x) )) = ((1−cos2(n+1)x −isin(2(n+1)x))/(1 −cos(2x)−isin(2x)))  =(( 2sin^2 (n+1)x −2isin(n+1)x cos(n+1)x)/(2sin^2 x −2i sinx cosx))  = ((−isin(n+1)x( cos(n+1)x +isin(n+1)x))/(−isinx( cosx +i sinx)))  = ((sin(n+1)x)/(sinx)) e^(i(n+1)x)  e^(−ix) = ((sin(n+1)x)/(sinx)) e^(inx)   = ((sin(n+1)x)/(sinx))cos(nx) +i ((sin(n+1)x sin(nx))/(sinx))  ⇒  Re( Σ_(k=0) ^(k=n)  e^(i2kx) )=  ((sin(n+1)x cos(nx))/(sinx))  ⇒ Σ_(k=0) ^(k=n)  cos^2 (kx)= ((n+1)/2)+  ((sin(n+1)x cos(nx))/(2sinx))  ∫_0 ^π ((sin(n+1)x cos(nx))/(2sinx))dx= Σ_(k=>) ^n ∫_0 ^π cos^2 (kx)dx−(((n+1)π)/2)  = (1/2)Σ_(k=0) ^(k=n) ∫_0 ^π (1+ cos(2kx))dx −(((n+1)π)/2)  = (1/2) Σ_(k=0) ^(k=n)  ∫_0 ^π cos(2kx)dx = (π/2)+ Σ_(k=1) ^(k=n) [(1/(2k)) sin(2kx)]_(k=0) ^(k=π=)   =(π/2) +0 = (π/2)⇒  ∫_0 ^π ((sin(n+1)x cos(nx))/(sinx))dx =π
k=0k=ncos2(kx)=12k=0k=n(1+cos(2kx))=n+12+12k=0ncos(2kx)butk=0k=ncos(2kx)=Re(k=0k=nei2kx)=Re(1ei2(n+1)x1ei2x)but1ei2(n+1)x1ei2x=1cos2(n+1)xisin(2(n+1)x)1cos(2x)isin(2x)=2sin2(n+1)x2isin(n+1)xcos(n+1)x2sin2x2isinxcosx=isin(n+1)x(cos(n+1)x+isin(n+1)x)isinx(cosx+isinx)=sin(n+1)xsinxei(n+1)xeix=sin(n+1)xsinxeinx=sin(n+1)xsinxcos(nx)+isin(n+1)xsin(nx)sinxRe(k=0k=nei2kx)=sin(n+1)xcos(nx)sinxk=0k=ncos2(kx)=n+12+sin(n+1)xcos(nx)2sinx0πsin(n+1)xcos(nx)2sinxdx=k=>n0πcos2(kx)dx(n+1)π2=12k=0k=n0π(1+cos(2kx))dx(n+1)π2=12k=0k=n0πcos(2kx)dx=π2+k=1k=n[12ksin(2kx)]k=0k=π==π2+0=π20πsin(n+1)xcos(nx)sinxdx=π

Leave a Reply

Your email address will not be published. Required fields are marked *