Question Number 63574 by Tawa1 last updated on 05/Jul/19

Commented by mathmax by abdo last updated on 05/Jul/19

Commented by Prithwish sen last updated on 05/Jul/19
![=Σ [(1/k) −(2/(2k+1))] =(1+(1/2) +(1/3)+ ..........∞) −2((1/3) + (1/5) + ......∞) = (1+(1/2) − (1/3) + (1/4) − (1/5) + (1/6) − .......∞) = 2−(1−(1/2) + (1/3) − (1/4) + .......∞) =2 − ln(2) I. can′t find out my mistake. Please help anyone](https://www.tinkutara.com/question/Q63583.png)
Commented by Tawa1 last updated on 05/Jul/19

Commented by mathmax by abdo last updated on 05/Jul/19
![method of series let S = Σ_(n=1) ^∞ (1/(n(2n+1))) and S(x)=Σ_(n=1) ^∞ (x^(2n+1) /(n(2n+1))) we have S=S(1) we have (dS/dx)(x)=Σ_(n=1) ^∞ (x^(2n) /n) =w(x^2 ) with w(t)=Σ_(n=1) ^∞ (t^n /n) we have w^′ (t) =Σ_(n=1) ^∞ t^(n−1) =Σ_(n=0) ^∞ t^n =(1/(1−t)) ⇒w(t)=−ln∣1−t∣ +c c=w(0)=0 ⇒(dS/dx)(x)=−ln(1−x^2 ) (we take −1<x<1) ⇒ S(x)=−∫_0 ^x ln(1−t^2 )dt +λ (λ=S(0)=0) ⇒S(x)=−∫_0 ^x ln(1−t^2 )dt ⇒ S =−∫_0 ^1 ln(1−t^2 )dt =− ∫_0 ^1 ln(1−t) −∫_0 ^1 ln(1+t)dt ∫_0 ^1 ln(1−t)dt =_(1−t =u) ∫_0 ^1 ln(u)du =[uln(u)−u]_0 ^1 =−1 ∫_0 ^1 ln(1+t)dt =_(1+t =u) ∫_1 ^2 ln(u)du =[uln(u)−u]_1 ^2 =2ln(2)−2+1 ⇒ S =1−2ln(2)+2−1 =2−2ln(2).](https://www.tinkutara.com/question/Q63590.png)
Commented by Tawa1 last updated on 05/Jul/19

Commented by Tawa1 last updated on 05/Jul/19

Commented by Tawa1 last updated on 05/Jul/19

Commented by Tawa1 last updated on 05/Jul/19

Commented by Prithwish sen last updated on 06/Jul/19

Commented by Tawa1 last updated on 06/Jul/19

Commented by Prithwish sen last updated on 06/Jul/19
![a_(n+1) =(√(1+n(√(1+(n−1)(√(1+(n−2)(√(1+....)))))))) Now, n−1 = (√((n−1)^2 )) = (√(1 + n(n−2))) = (√(1+n(√((n−2)^2 )))) = (√(1+n(√(1+ (n−1)(n−2))))) = (√(1+n(√(1+(n−1)(√(1+(n−2)(√(1+..)))))))) as n→∞ a_(n+1) → (n−1)⇒a_n → (n−2) ⇒ (a_n /n) → (1−(2/n))→ 1 Ω = lim_(n→∞) [(1/n){ (1/((n + (a_n /n) )))+ (2/((n + 2.(a_n /n) ))) + .....+ (n/((n + n.(a_n /n) )))}]^(n^(1/n) −1) = lim_(n→∞ ) [(1/n){(l/(n+1)) +(2/(n+2)) + .......... + (n/(n+n)) }]^n^((1/n) −1) = lim_(n→∞) [(1/n){((1/n)/(1+(1/n))) + ((2/n)/(1+ (2/n))) + .....+ ((n/n)/(1 + (n/n))) }]^n^((1/n) −1) taking log ln(Ω) = lim_(n→∞) (n^(1/n) −1) ln [ lim_(n→∞) (1/n) Σ_(r=1) ^n ((r/n)/(1+(r/n))) ] = lim_(n→∞) (n^(1/n) −1) ln[∫_0 ^1 ((xdx)/(1+x))] = lim_(n→∞ ) (n^(1/n) −1)ln(1−ln2) Now as n→∞ lnΩ → 0 ⇒ Ω→1 I don′t know whether it is corrector not.Please give your valuable suggestion.](https://www.tinkutara.com/question/Q63616.png)
Commented by Prithwish sen last updated on 06/Jul/19
