Menu Close

prove-that-k-1-1-k-2k-1-2-2ln-2-




Question Number 63574 by Tawa1 last updated on 05/Jul/19
prove that   Σ_(k = 1) ^∞   (1/(k(2k + 1)))  =  2 − 2ln(2)
provethatk=11k(2k+1)=22ln(2)
Commented by mathmax by abdo last updated on 05/Jul/19
the H_n  method  let S_n =Σ_(k=1) ^n   (1/(k(2k+1))) ⇒(1/2) S_n =Σ_(k=1) ^n  (1/(2k(2k+1)))  =Σ_(k=1) ^n {(1/(2k)) −(1/(2k+1))} =(1/2) Σ_(k=1) ^n  (1/k) −Σ_(k=1) ^n  (1/(2k+1))  we have  Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=1) ^n  (1/(2k+1)) =(1/3) +(1/5) +......+(1/(2n+1)) =1+(1/2) +(1/3) +(1/4) +....+(1/(2n)) +(1/(2n+1))  −1−(1/2)−(1/4)−....−(1/(2n)) =H_(2n+1) −1−(1/2) H_n  ⇒  (1/2) S_n =(1/2) H_n −H_(2n+1) +1+(1/2)H_n =H_n −H_(2n+1) +1  =ln(n)+γ +o((1/n))−ln(2n+1)−γ +o((1/n)) +1  =ln((n/(2n+1))) +o((1/n))+1 ⇒ S_n =2ln((n/(2n+1))) +2  ⇒  lim_(n→+∞)  S_n =2ln((1/2))+2 =−2ln(2) +2 .the result is proved.
theHnmethodletSn=k=1n1k(2k+1)12Sn=k=1n12k(2k+1)=k=1n{12k12k+1}=12k=1n1kk=1n12k+1wehavek=1n1k=Hnk=1n12k+1=13+15++12n+1=1+12+13+14+.+12n+12n+111214.12n=H2n+1112Hn12Sn=12HnH2n+1+1+12Hn=HnH2n+1+1=ln(n)+γ+o(1n)ln(2n+1)γ+o(1n)+1=ln(n2n+1)+o(1n)+1Sn=2ln(n2n+1)+2limn+Sn=2ln(12)+2=2ln(2)+2.theresultisproved.
Commented by Prithwish sen last updated on 05/Jul/19
=Σ [(1/k) −(2/(2k+1))]  =(1+(1/2) +(1/3)+ ..........∞) −2((1/3) + (1/5) + ......∞)  = (1+(1/2) − (1/3) + (1/4) − (1/5) + (1/6) − .......∞)  = 2−(1−(1/2) + (1/3) − (1/4) + .......∞)  =2 − ln(2)  I. can′t find out my mistake. Please help anyone
=Σ[1k22k+1]=(1+12+13+.)2(13+15+)=(1+1213+1415+16.)=2(112+1314+.)=2ln(2)I.cantfindoutmymistake.Pleasehelpanyone
Commented by Tawa1 last updated on 05/Jul/19
God bless you sirs
Godblessyousirs
Commented by mathmax by abdo last updated on 05/Jul/19
method of series let S = Σ_(n=1) ^∞  (1/(n(2n+1)))   and S(x)=Σ_(n=1) ^∞   (x^(2n+1) /(n(2n+1)))   we have S=S(1)  we have (dS/dx)(x)=Σ_(n=1) ^∞  (x^(2n) /n) =w(x^2 ) with w(t)=Σ_(n=1) ^∞  (t^n /n)  we have w^′ (t) =Σ_(n=1) ^∞  t^(n−1)  =Σ_(n=0) ^∞  t^n  =(1/(1−t)) ⇒w(t)=−ln∣1−t∣ +c  c=w(0)=0 ⇒(dS/dx)(x)=−ln(1−x^2 )     (we take  −1<x<1) ⇒  S(x)=−∫_0 ^x ln(1−t^2 )dt +λ     (λ=S(0)=0) ⇒S(x)=−∫_0 ^x ln(1−t^2 )dt ⇒  S =−∫_0 ^1 ln(1−t^2 )dt =− ∫_0 ^1 ln(1−t) −∫_0 ^1 ln(1+t)dt  ∫_0 ^1 ln(1−t)dt =_(1−t =u)     ∫_0 ^1 ln(u)du =[uln(u)−u]_0 ^1  =−1  ∫_0 ^1 ln(1+t)dt =_(1+t =u)     ∫_1 ^2  ln(u)du =[uln(u)−u]_1 ^2  =2ln(2)−2+1 ⇒  S =1−2ln(2)+2−1 =2−2ln(2).
methodofseriesletS=n=11n(2n+1)andS(x)=n=1x2n+1n(2n+1)wehaveS=S(1)wehavedSdx(x)=n=1x2nn=w(x2)withw(t)=n=1tnnwehavew(t)=n=1tn1=n=0tn=11tw(t)=ln1t+cc=w(0)=0dSdx(x)=ln(1x2)(wetake1<x<1)S(x)=0xln(1t2)dt+λ(λ=S(0)=0)S(x)=0xln(1t2)dtS=01ln(1t2)dt=01ln(1t)01ln(1+t)dt01ln(1t)dt=1t=u01ln(u)du=[uln(u)u]01=101ln(1+t)dt=1+t=u12ln(u)du=[uln(u)u]12=2ln(2)2+1S=12ln(2)+21=22ln(2).
Commented by Tawa1 last updated on 05/Jul/19
God bless you sir
Godblessyousir
Commented by Tawa1 last updated on 05/Jul/19
Commented by Tawa1 last updated on 05/Jul/19
Please help sir
Pleasehelpsir
Commented by Tawa1 last updated on 05/Jul/19
I appreciate your time sir
Iappreciateyourtimesir
Commented by Prithwish sen last updated on 06/Jul/19
What is the answer ?
Whatistheanswer?
Commented by Tawa1 last updated on 06/Jul/19
I don′t know the answer sir. But you can help sir.
Idontknowtheanswersir.Butyoucanhelpsir.
Commented by Prithwish sen last updated on 06/Jul/19
a_(n+1) =(√(1+n(√(1+(n−1)(√(1+(n−2)(√(1+....))))))))  Now, n−1 = (√((n−1)^2  )) = (√(1 + n(n−2)))    = (√(1+n(√((n−2)^2 )))) = (√(1+n(√(1+ (n−1)(n−2)))))     = (√(1+n(√(1+(n−1)(√(1+(n−2)(√(1+..))))))))  as n→∞  a_(n+1) → (n−1)⇒a_n → (n−2) ⇒ (a_n /n) → (1−(2/n))→ 1  Ω = lim_(n→∞) [(1/n){ (1/((n + (a_n /n) )))+ (2/((n + 2.(a_n /n) )))  +  .....+ (n/((n + n.(a_n /n) )))}]^(n^(1/n) −1)   = lim_(n→∞  )  [(1/n){(l/(n+1)) +(2/(n+2)) + .......... + (n/(n+n)) }]^n^((1/n) −1)    = lim_(n→∞) [(1/n){((1/n)/(1+(1/n))) + ((2/n)/(1+ (2/n))) + .....+ ((n/n)/(1 + (n/n))) }]^n^((1/n) −1)    taking log  ln(Ω) = lim_(n→∞) (n^(1/n) −1) ln [ lim_(n→∞) (1/n) Σ_(r=1) ^n ((r/n)/(1+(r/n))) ]   = lim_(n→∞) (n^(1/n) −1) ln[∫_0 ^1 ((xdx)/(1+x))]  = lim_(n→∞ ) (n^(1/n) −1)ln(1−ln2)  Now as n→∞ lnΩ → 0 ⇒ Ω→1  I don′t know whether it is corrector not.Please  give your valuable suggestion.
an+1=1+n1+(n1)1+(n2)1+.Now,n1=(n1)2=1+n(n2)=1+n(n2)2=1+n1+(n1)(n2)=1+n1+(n1)1+(n2)1+..asnan+1(n1)an(n2)ann(12n)1Ω=limn[1n{1(n+ann)+2(n+2.ann)+..+n(n+n.ann)}]n1n1=limn[1n{ln+1+2n+2+.+nn+n}]n1n1=limn[1n{1n1+1n+2n1+2n+..+nn1+nn}]n1n1takinglogln(Ω)=limn(n1n1)ln[limn1nnr=1rn1+rn]=limn(n1n1)ln[01xdx1+x]=limn(n1n1)ln(1ln2)NowasnlnΩ0Ω1Idontknowwhetheritiscorrectornot.Pleasegiveyourvaluablesuggestion.
Commented by Prithwish sen last updated on 06/Jul/19
thanks abdo sir
thanksabdosir

Leave a Reply

Your email address will not be published. Required fields are marked *