Menu Close

Prove-that-k-1-H-k-3-2-k-3-3-ln-3-2-pi-2-ln2-3-




Question Number 155386 by mathdanisur last updated on 29/Sep/21
Prove that:  Σ_(k=1) ^∞ (((H_k )^3 )/2^k ) = ((3ζ(3) + ln^3 2 + π^2 ln2)/3)
Provethat:k=1(Hk)32k=3ζ(3)+ln32+π2ln23
Answered by Kamel last updated on 30/Sep/21
  Prove that:  Σ_(k=1) ^∞ (((H_k )^3 )/2^k ) = ((3ζ(3) + ln^3 2 + π^2 ln2)/3)      Ω=Σ_(n=1) ^(+∞) (((H_n )^3 )/2^n )=Σ_(n=1) ^(+∞) (((H_(n+1) −(1/(n+1)))^3 )/2^n )      =2Σ_(n=2) ^(+∞) (((H_n )^3 )/2^n )−6Σ_(n=2) ^(+∞) (((H_n )^2 )/(n2^n ))+6Σ_(n=2) ^(+∞) (H_n /(n^2 2^n ))−2Σ_(n=2) ^(+∞) (1/(n^3 2^n ))      =2Σ_(n=1) ^(+∞) (((H_n )^3 )/2^n )−6Σ_(n=1) ^(+∞) (((H_n )^2 )/(n2^n ))+6Σ_(n=1) ^(+∞) (H_n /(n^2 2^n ))−2Σ_(n=1) ^(+∞) (1/(n^3 2^n ))   ∴Ω=6Σ_(n=1) ^(+∞) (((H_n )^2 )/(n2^n ))−6Σ_(n=1) ^(+∞) (H_n /(n^2 2^n ))+2Σ_(n=1) ^(+∞) (1/(n^3 2^n ))  Σ_(n=1) ^(+∞) (((H_n )^2 )/(n2^n ))=Σ_(n=1) ^(+∞) (1/(n2^n ))((H_(n+1) )^2 −((2H_(n+1) )/(n+1))+(1/((n+1)^2 )))  Ω_1 =Σ_(n=1) ^(+∞) (((H_n )^2 )/(n2^n )),f(x)=Σ_(n=1) ^(+∞) (1/n)H_n ^2 x^n   f′(x)=(1/x)Σ_(n=1) ^(+∞) (H_(n+1) ^2 −((2H_(n+1) )/(n+1))+(1/((n+1)^2 )))x^(n−1)              =(1/x)(f′(x)−(2/x)(Li_2 (x)+(1/2)Ln^2 (1−x))+((Li_2 (x))/x)  ∴Ω_1 =f((1/2))=∫_0 ^(1/2) (((Ln^2 (1−x))/(x(1−x)))+((Li_2 (x))/x)+((Li_2 (x))/(1−x)))dx            =Li_3 ((1/2))+Ln(2)Li_2 ((1/2))+((Ln^3 (2))/3)=((7ζ(3))/8)...(1)  Ω_2 =Σ_(n=1) ^(+∞) (H_n /(n^2 2^n ))=∫_0 ^(1/2) (H_n /n)x^(n−1) dx=∫_0 ^(1/2) ((Li_2 (x))/x)dx+(1/2)∫_0 ^(1/2) ((Ln^2 (1−x))/x)dx        =−(1/2)∫_0 ^(1/2) Σ_(n=0) ^(+∞) x^n Ln^2 (x)dx+ζ(3)=ζ(3)−((Ln^3 (2))/2)−Ln(2)Li_2 ((1/2))        =ζ(3)−(π^2 /(12))Ln(2)  Ω=6Ω_1 −6Ω_2 +2Li_3 ((1/2))=ζ(3)+((Ln^3 (2)+π^2 Ln(2))/3)                                 ∴  𝚺_(n=1) ^(+∞) (((H_n )^3 )/2^n )=((3𝛇(3)+𝛑^2 Ln(2)+Ln^3 (2))/3)  Note_(−) : Li_3 ((1/2))=∫_0 ^(1/2) ((Li_2 (x))/x)dx=((7ζ(3))/8)+((Ln^3 (2))/6)−(π^2 /(12))Ln(2)                                                             KAMEL BENAICHA
Provethat:k=1(Hk)32k=3ζ(3)+ln32+π2ln23Ω=+n=1(Hn)32n=+n=1(Hn+11n+1)32n=2+n=2(Hn)32n6+n=2(Hn)2n2n+6+n=2Hnn22n2+n=21n32n=2+n=1(Hn)32n6+n=1(Hn)2n2n+6+n=1Hnn22n2+n=11n32nΩ=6+n=1(Hn)2n2n6+n=1Hnn22n+2+n=11n32n+n=1(Hn)2n2n=+n=11n2n((Hn+1)22Hn+1n+1+1(n+1)2)Ω1=+n=1(Hn)2n2n,f(x)=+n=11nHn2xnf(x)=1x+n=1(Hn+122Hn+1n+1+1(n+1)2)xn1=1x(f(x)2x(Li2(x)+12Ln2(1x))+Li2(x)xΩ1=f(12)=012(Ln2(1x)x(1x)+Li2(x)x+Li2(x)1x)dx=Li3(12)+Ln(2)Li2(12)+Ln3(2)3=7ζ(3)8(1)Ω2=+n=1Hnn22n=012Hnnxn1dx=012Li2(x)xdx+12012Ln2(1x)xdx=12012+n=0xnLn2(x)dx+ζ(3)=ζ(3)Ln3(2)2Ln(2)Li2(12)=ζ(3)π212Ln(2)Ω=6Ω16Ω2+2Li3(12)=ζ(3)+Ln3(2)+π2Ln(2)3+n=1(Hn)32n=3ζ(3)+π2Ln(2)+Ln3(2)3Note:Li3(12)=012Li2(x)xdx=7ζ(3)8+Ln3(2)6π212Ln(2)KAMELBENAICHA
Commented by Tawa11 last updated on 01/Oct/21
Great sir
Greatsir
Commented by mathdanisur last updated on 01/Oct/21
thank you Ser
thankyouSer

Leave a Reply

Your email address will not be published. Required fields are marked *