Question Number 164544 by mr W last updated on 18/Jan/22
$${prove}\:{that}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} =\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} }−\mathrm{1} \\ $$
Answered by mindispower last updated on 18/Jan/22
$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}−\mathrm{1} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\begin{pmatrix}{{n}}\\{{n}−{k}}\end{pmatrix} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{{k}}\end{pmatrix}{x}^{{k}} =\left(\mathrm{1}+{x}\right)^{\mathrm{2}{n}} =\left(\mathrm{1}+{x}\right)^{{n}} \left(\mathrm{1}+{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\underset{{j}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\begin{pmatrix}{{n}}\\{{n}−{j}}\end{pmatrix}{x}^{{n}+{k}−{j}} \\ $$$${coeficient}\:{of}\:{x}^{{n}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\begin{pmatrix}{{n}}\\{{n}−{k}}\end{pmatrix}=\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix} \\ $$$${S}=\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}−\mathrm{1}=\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} }−\mathrm{1} \\ $$$$ \\ $$
Commented by mr W last updated on 18/Jan/22
$${thanks}\:{alot}\:{sir}! \\ $$
Commented by mindispower last updated on 18/Jan/22
$${pleasur}\:{sir}\:{have}\:\:{nice}\:{day}\:{we}\:{can}\:{use}\:{integral}\:{also} \\ $$
Answered by mindispower last updated on 19/Jan/22
$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} {e}^{{imx}} {dx}=\begin{cases}{\mathrm{0}\:{if}\:{m}\neq\mathrm{0}}\\{\mathrm{2}\pi\:{if}\:{m}=\mathrm{0}}\end{cases} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}\pi}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\underset{{j}=\mathrm{0}} {\overset{{n}} {\sum}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{e}^{{ikx}} \begin{pmatrix}{{n}}\\{{j}}\end{pmatrix}{e}^{−{ijx}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{e}^{{ikx}} \right)\left(\underset{{j}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{j}}\end{pmatrix}{e}^{−{ijx}} \right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\mathrm{1}+{e}^{{ix}} \right)^{{n}} \left(\mathrm{1}+{e}^{−{ix}} \right)^{{n}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\mathrm{2}+\mathrm{2}{cos}\left({x}\right)\right)^{{n}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{4}^{{n}} {cos}^{\mathrm{2}{n}} \left(\frac{{x}}{\mathrm{2}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\pi} \\ $$$$\int_{\mathrm{0}} ^{\pi} \mathrm{4}^{{n}} {coks}^{\mathrm{2}{n}} \left({y}\right){dy}=\frac{\mathrm{1}}{\pi}\left(\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}{n}} \left({y}\right){dy}\right) \\ $$$$=\frac{\mathrm{4}^{{n}} }{\pi}\beta\left({n}+\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\pi}.\frac{\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left({n}+\mathrm{1}\right)}=\mathrm{4}^{{n}} \frac{\left({n}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)……\left({n}+\frac{\mathrm{1}}{\mathrm{2}}−\left({n}−\mathrm{1}\right)\right)\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{{n}!.\pi} \\ $$$$=\frac{\mathrm{2}^{{n}} }{{n}!}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$$$=\frac{\mathrm{2}^{{n}} .{n}!\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{2}{k}+\mathrm{1}\right)}{{n}!.{n}!}=\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{2}{k}\right).\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{2}{k}+\mathrm{1}\right)}{\left({n}!\right)^{\mathrm{2}} }=\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} } \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} −\mathrm{1}=\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} }−\mathrm{1} \\ $$$$ \\ $$
Commented by mr W last updated on 19/Jan/22
$${great}! \\ $$