Menu Close

prove-that-k-1-n-sin-k-n-2-1-2-1-2n-o-1-n-




Question Number 34689 by math khazana by abdo last updated on 09/May/18
prove that  Σ_(k=1) ^n  sin((k/n^2 )) =(1/2) +(1/(2n)) +o((1/n))
$${prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$
Commented by abdo mathsup 649 cc last updated on 14/May/18
we have sinx = x  +o(x^3 )  (x→0)  sin((k/n^2 )) = (k/n^2 )   +o((1/n^6 ))  Σ_(k=1) ^n  sin((k/n^2 )) = (1/n^2 ) Σ_(k=1) ^n  k  +o((1/n))  = (1/n^2 ) ((n(n+1))/2) +o((1/n))  = (1/2) + (1/(2n)) +o((1/n))  so S_n = (1/2) +(1/(2n)) +o((1/n))  Remark    its clear that lim_(n→+∞)  S_n =(1/2)
$${we}\:{have}\:{sinx}\:=\:{x}\:\:+{o}\left({x}^{\mathrm{3}} \right)\:\:\left({x}\rightarrow\mathrm{0}\right) \\ $$$${sin}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right)\:=\:\frac{{k}}{{n}^{\mathrm{2}} }\:\:\:+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{6}} }\right) \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{k}}{{n}^{\mathrm{2}} }\right)\:=\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\:\:+{o}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$$=\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{2}{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\:{so}\:{S}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$${Remark}\:\:\:\:{its}\:{clear}\:{that}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *