Question Number 28991 by abdo imad last updated on 02/Feb/18
$${prove}\:{that}\:{L}\left(\mathrm{1}\right)\left({s}\right)=\:\frac{\mathrm{1}}{{s}}\:\:{and}\:{L}\left({t}^{{n}} \right)\left({s}\right)=\:\frac{{n}!}{{s}^{{n}+\mathrm{1}} }\:.{L}\:{means} \\ $$$${laplace}\:{transform}. \\ $$
Commented by abdo imad last updated on 03/Feb/18
$${L}\left(\mathrm{1}\right)\left({s}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{st}} {dt}\:\:=\frac{\mathrm{1}}{{s}}\:\:{with}\:{s}>\mathrm{0}\:{and} \\ $$$${L}\left({t}^{{n}} \right)\left({s}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} \:{e}^{−{st}} \:{dt}\:\:{let}\:{use}\:{the}\:{ch}.\:{st}={x}\: \\ $$$${L}\left({t}^{{n}} \right)\left({s}\right)=\:\int_{\mathrm{0}} ^{\infty} \left(\frac{{x}}{{s}}\right)^{{n}} \:{e}^{−{x}} \:\frac{{dx}}{{s}}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{s}^{{n}+\mathrm{1}} }\:{x}^{{n}} {e}^{−{x}} {dx} \\ $$$$=\:\frac{\mathrm{1}}{{s}^{{n}+\mathrm{1}} }\int_{\mathrm{0}} ^{\infty} \:{x}^{{n}} \:{e}^{−{x}} {dx}\:{let}\:{put}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:{x}^{{n}} \:{e}^{−{x}} {dx}\:{by}\:{parts} \\ $$$${A}_{{n}} =\:\left[−{x}^{{n}} {e}^{−{x}} \right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \:{nx}^{{n}−\mathrm{1}} \:{e}^{−{x}} {dx}=\:{n}\:{A}_{{n}−\mathrm{1}} \\ $$$${A}_{{n}} ={n}\left({n}−\mathrm{1}\right){A}_{{n}−\mathrm{2}} =….={n}\left({n}−\mathrm{1}\right)….\left({n}−{p}+\mathrm{1}\right){LLA}_{{n}−{p}} \\ $$$$={n}!\:{A}_{\mathrm{0}\:} \:={n}!\:\:\:\:\:\:\:\:\:\:\:\:\:\left({A}_{{o}} =\mathrm{1}\right)\:\Rightarrow \\ $$$${L}\left({t}^{{n}} \right)\left({s}\right)=\:\frac{{n}!}{{s}^{{n}+\mathrm{1}} }\:. \\ $$
Answered by sma3l2996 last updated on 03/Feb/18
$${L}\left(\mathrm{1}\right)\left({s}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} {dt}=−\frac{\mathrm{1}}{{s}}\left[{e}^{−{st}} \right]_{\mathrm{0}} ^{\infty} =\frac{\mathrm{1}}{{s}} \\ $$$${L}\left({t}^{{n}} \right)\left({s}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{n}} {e}^{−{st}} {dt} \\ $$$${u}={t}^{{n}} \Rightarrow{u}'={nt}^{{n}−\mathrm{1}} \\ $$$${v}'={e}^{−{st}} \Rightarrow{v}=−\frac{\mathrm{1}}{{s}}{e}^{−{st}} \\ $$$${L}\left({t}^{{n}} \right)\left({s}\right)=\frac{{n}}{{s}}\int_{\mathrm{0}} ^{\infty} {t}^{{n}−\mathrm{1}} {e}^{−{st}} {dt} \\ $$$${so}\:\:{L}\left({t}^{{n}} \right)\left({s}\right)=\frac{{n}}{{s}}{L}\left({t}^{{n}−\mathrm{1}} \right)\left({s}\right) \\ $$$${L}\left({t}^{{n}−\mathrm{1}} \right)\left({s}\right)=\frac{{n}−\mathrm{1}}{{s}}{L}\left({t}^{{n}−\mathrm{2}} \right)\left({s}\right) \\ $$$${so}: \\ $$$${L}\left({t}^{{n}} \right)\left({s}\right)=\frac{{n}}{{s}}\left(\frac{{n}−\mathrm{1}}{{s}}\left(\frac{{n}−\mathrm{2}}{{s}}…\left(\frac{{n}−\left({n}−\mathrm{1}\right)}{{s}}{L}\left({t}^{{n}−\left({n}−\mathrm{1}\right)} \right)…\right)\right)\right. \\ $$$$=\frac{{n}!}{{s}^{{n}} }{L}\left({t}\right)\left({s}\right)=\frac{{n}!}{{s}^{{n}−\mathrm{1}} }\left(\frac{\mathrm{1}}{{s}}{L}\left(\mathrm{1}\right)\left({s}\right)\right)=\frac{{n}!}{{s}^{{n}} }\left(\frac{\mathrm{1}}{{s}}\right) \\ $$$${L}\left({t}^{{n}} \right)=\frac{{n}!}{{s}^{{n}+\mathrm{1}} } \\ $$$$ \\ $$