prove-that-L-1-s-1-s-and-L-t-n-s-n-s-n-1-L-means-laplace-transform- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 28991 by abdo imad last updated on 02/Feb/18 provethatL(1)(s)=1sandL(tn)(s)=n!sn+1.Lmeanslaplacetransform. Commented by abdo imad last updated on 03/Feb/18 L(1)(s)=∫0∞e−stdt=1swiths>0andL(tn)(s)=∫0∞tne−stdtletusethech.st=xL(tn)(s)=∫0∞(xs)ne−xdxs=∫0∞1sn+1xne−xdx=1sn+1∫0∞xne−xdxletputAn=∫0∞xne−xdxbypartsAn=[−xne−x]0∞+∫0∞nxn−1e−xdx=nAn−1An=n(n−1)An−2=….=n(n−1)….(n−p+1)LLAn−p=n!A0=n!(Ao=1)⇒L(tn)(s)=n!sn+1. Answered by sma3l2996 last updated on 03/Feb/18 L(1)(s)=∫0∞e−stdt=−1s[e−st]0∞=1sL(tn)(s)=∫0∞tne−stdtu=tn⇒u′=ntn−1v′=e−st⇒v=−1se−stL(tn)(s)=ns∫0∞tn−1e−stdtsoL(tn)(s)=nsL(tn−1)(s)L(tn−1)(s)=n−1sL(tn−2)(s)so:L(tn)(s)=ns(n−1s(n−2s…(n−(n−1)sL(tn−(n−1))…))=n!snL(t)(s)=n!sn−1(1sL(1)(s))=n!sn(1s)L(tn)=n!sn+1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-e-z-z-1-z-3-2-dz-with-id-the-positif-circle-z-C-z-3-2-Next Next post: L-means-laplace-transform-find-L-e-at-s- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.