Menu Close

prove-that-L-1-s-1-s-and-L-t-n-s-n-s-n-1-L-means-laplace-transform-




Question Number 28991 by abdo imad last updated on 02/Feb/18
prove that L(1)(s)= (1/s)  and L(t^n )(s)= ((n!)/s^(n+1) ) .L means  laplace transform.
provethatL(1)(s)=1sandL(tn)(s)=n!sn+1.Lmeanslaplacetransform.
Commented by abdo imad last updated on 03/Feb/18
L(1)(s)=∫_0 ^∞   e^(−st) dt  =(1/s)  with s>0 and  L(t^n )(s)=∫_0 ^∞  t^n  e^(−st)  dt  let use the ch. st=x   L(t^n )(s)= ∫_0 ^∞ ((x/s))^n  e^(−x)  (dx/s) =∫_0 ^∞  (1/s^(n+1) ) x^n e^(−x) dx  = (1/s^(n+1) )∫_0 ^∞  x^n  e^(−x) dx let put A_n = ∫_0 ^∞  x^n  e^(−x) dx by parts  A_n = [−x^n e^(−x) ]_0 ^∞ +∫_0 ^∞  nx^(n−1)  e^(−x) dx= n A_(n−1)   A_n =n(n−1)A_(n−2) =....=n(n−1)....(n−p+1)LLA_(n−p)   =n! A_(0 )  =n!             (A_o =1) ⇒  L(t^n )(s)= ((n!)/s^(n+1) ) .
L(1)(s)=0estdt=1swiths>0andL(tn)(s)=0tnestdtletusethech.st=xL(tn)(s)=0(xs)nexdxs=01sn+1xnexdx=1sn+10xnexdxletputAn=0xnexdxbypartsAn=[xnex]0+0nxn1exdx=nAn1An=n(n1)An2=.=n(n1).(np+1)LLAnp=n!A0=n!(Ao=1)L(tn)(s)=n!sn+1.
Answered by sma3l2996 last updated on 03/Feb/18
L(1)(s)=∫_0 ^∞ e^(−st) dt=−(1/s)[e^(−st) ]_0 ^∞ =(1/s)  L(t^n )(s)=∫_0 ^∞ t^n e^(−st) dt  u=t^n ⇒u′=nt^(n−1)   v′=e^(−st) ⇒v=−(1/s)e^(−st)   L(t^n )(s)=(n/s)∫_0 ^∞ t^(n−1) e^(−st) dt  so  L(t^n )(s)=(n/s)L(t^(n−1) )(s)  L(t^(n−1) )(s)=((n−1)/s)L(t^(n−2) )(s)  so:  L(t^n )(s)=(n/s)(((n−1)/s)(((n−2)/s)...(((n−(n−1))/s)L(t^(n−(n−1)) )...))  =((n!)/s^n )L(t)(s)=((n!)/s^(n−1) )((1/s)L(1)(s))=((n!)/s^n )((1/s))  L(t^n )=((n!)/s^(n+1) )
L(1)(s)=0estdt=1s[est]0=1sL(tn)(s)=0tnestdtu=tnu=ntn1v=estv=1sestL(tn)(s)=ns0tn1estdtsoL(tn)(s)=nsL(tn1)(s)L(tn1)(s)=n1sL(tn2)(s)so:L(tn)(s)=ns(n1s(n2s(n(n1)sL(tn(n1))))=n!snL(t)(s)=n!sn1(1sL(1)(s))=n!sn(1s)L(tn)=n!sn+1

Leave a Reply

Your email address will not be published. Required fields are marked *