Prove-that-length-of-lactus-rectum-when-directrix-are-parallel-to-y-axis-is-y-1-y-2-2b-2-a- Tinku Tara June 4, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 51614 by peter frank last updated on 29/Dec/18 Provethatlengthoflactusrectumwhendirectrixareparalleltoy−axisisy1−y2=2b2a Answered by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18 forellipsex2a2+y2b2=1ditectrixis∥toyaxisfocus(c,0)and(−c,0)soeqnofstline∥toyaxispassingthrough(c,0)isx=csolvex=candx2a2+y2b2=1y2b2=1−c2a2soy=±baa2−c2nowdiztancebetween(c,baa2−c2)and(c,−baa2−c2)is=2baa2−c2[forellipsec2=a2−b2]=2ba×b=2b2aforhyperbolax2a2−y2b2=1directrixis∥toyaxisfocus(c,0)(−c,0)eqnofstlinepassingthrough(c,0)and∥toyaxisisx=csolvex=candx2a2−y2b2=1y2b2=c2a2−1y=±bac2−a2y=±ba×b[forhyperbolac2=a2+b2]y=±b2asolatusrectumis2b2a Commented by peter frank last updated on 29/Dec/18 verynicesir….thanks Answered by peter frank last updated on 29/Dec/18 (x−h)2a2−(y−k)2b2=1x=h+ae(paralleltoy−axis)(h+ae−h)2a2−(y−k)2b2=1e2−1=(y−k)2b2y−k=b2(e2−1)y−k=±b(e2−1)y=k±b(e2−1)y1=k−be2−1….(i)y2=k+be2−1….(ii)y2−y1=−2be2−1y1−y2=2be2−1fromb2=a2(e2−1)y1−y2=2b×bay1−y2=2b2a Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-6-e-4x-2-dx-Next Next post: Question-51621 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.