Menu Close

Prove-that-length-of-lactus-rectum-when-directrix-are-parallel-to-y-axis-is-y-1-y-2-2b-2-a-




Question Number 51614 by peter frank last updated on 29/Dec/18
Prove that length of  lactus rectum when   directrix are parallel to  y−axis is   y_1 −y_2 =((2b^2 )/a)
Provethatlengthoflactusrectumwhendirectrixareparalleltoyaxisisy1y2=2b2a
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
for ellipse (x^2 /a^2 )+(y^2 /b^2 )=1  ditectrix is ∥ to yaxis  focus(c,0) and (−c,0)  so eqn of st line ∥to yaxis  passing through (c,0) is x=c  solve x=c  and (x^2 /a^2 )+(y^2 /b^2 )=1  (y^2 /b^2 )=1−(c^2 /a^2 )  so y=±(b/a)(√(a^2 −c^2 ))   now diztance between (c,(b/a)(√(a^2 −c^2 )) )and(c,((−b)/a)(√(a^2 −c^2 )) )  is=((2b)/a)(√(a^2 −c^2 ))   [for ellipse c^2 =a^2 −b^2 ]  =((2b)/a)×b=((2b^2 )/a)  for hyperbola (x^2 /a^2 )−(y^2 /b^2 )=1  directrix is ∥ to yaxis  focus(c,0) (−c,0)  eqn of st line passing through(c,0) and ∥ to yaxis  is x=c  solve x=c and (x^2 /a^2 )−(y^2 /b^2 )=1  (y^2 /b^2 )=(c^2 /a^2 )−1  y=±(b/a)(√(c^2 −a^2 ))   y=±(b/a)×b  [for hyperbola c^2 =a^2 +b^2 ]  y=±(b^2 /a)  so latus rectum is ((2b^2 )/a)
forellipsex2a2+y2b2=1ditectrixistoyaxisfocus(c,0)and(c,0)soeqnofstlinetoyaxispassingthrough(c,0)isx=csolvex=candx2a2+y2b2=1y2b2=1c2a2soy=±baa2c2nowdiztancebetween(c,baa2c2)and(c,baa2c2)is=2baa2c2[forellipsec2=a2b2]=2ba×b=2b2aforhyperbolax2a2y2b2=1directrixistoyaxisfocus(c,0)(c,0)eqnofstlinepassingthrough(c,0)andtoyaxisisx=csolvex=candx2a2y2b2=1y2b2=c2a21y=±bac2a2y=±ba×b[forhyperbolac2=a2+b2]y=±b2asolatusrectumis2b2a
Commented by peter frank last updated on 29/Dec/18
very nice sir....thanks
verynicesir.thanks
Answered by peter frank last updated on 29/Dec/18
(((x−h)^2 )/a^2 )−(((y−k)^2 )/b^2 )=1  x=h+ae(parallel to y−axis)  (((h+ae−h)^2 )/a^2 )−(((y−k)^2 )/b^2 )=1  e^2 −1=(((y−k)^2 )/b^2 )  y−k=(√(b^2 (e^2 −1)))    y−k=±b(√((e^2 −1)))    y=k±b(√((e^2 −1)))    y_(1 ) =k−b(√(e^2 −1)) ....(i)  y_(2 ) =k+b(√(e^2 −1)) ....(ii)  y_(2 ) −y_1 =−2b(√(e^2 −1))   y_(1 ) −y_2 =2b(√(e^2 −1))   from  b^2 =a^2 (e^2 −1)  y_(1 ) −y_2 =2b×(b/a)  y_(1 ) −y_2 =((2b^2 )/a)
(xh)2a2(yk)2b2=1x=h+ae(paralleltoyaxis)(h+aeh)2a2(yk)2b2=1e21=(yk)2b2yk=b2(e21)yk=±b(e21)y=k±b(e21)y1=kbe21.(i)y2=k+be21.(ii)y2y1=2be21y1y2=2be21fromb2=a2(e21)y1y2=2b×bay1y2=2b2a

Leave a Reply

Your email address will not be published. Required fields are marked *