Menu Close

prove-that-lim-n-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-n-term-2-pi-




Question Number 179657 by mathlove last updated on 31/Oct/22
prove that  lim_(n→∞) ((√((1/2)×(√((1/2)+(1/2)(√(1/2))))))×(√((1/2)+(1/2)(√((1/2)+(1/2)(√(1/2))))))×∙∙∙∙∙(√((1/2)+(1/2)(√((1/2)+(1/2)(√((1/(2+)).....+(1/2)(√(1/2))))))))_(n term) )=(2/π)
provethatlimn(12×12+1212×12+1212+1212×12+1212+1212+..+1212nterm)=2π
Commented by mr W last updated on 01/Nov/22
the question should be:  lim_(n→∞) ((√(1/2))×(√((1/2)+(1/2)(√(1/2))))×(√((1/2)+(1/2)(√((1/2)+(1/2)(√(1/2))))))×∙∙∙∙∙(√((1/2)+(1/2)(√((1/2)+(1/2)(√((1/(2+)).....+(1/2)(√(1/2))))))))_(n term) )=(2/π)
thequestionshouldbe:limn(12×12+1212×12+1212+1212×12+1212+1212+..+1212nterm)=2π
Commented by mathlove last updated on 02/Nov/22
yes sir
yessir
Answered by mr W last updated on 01/Nov/22
a_1 =(√(1/2))  a_2 =(√((1/2)+(1/2)(√(1/2))))  ...  a_n =(√((1/2)+(1/2)a_(n−1) ))  2a_n ^2 −1=a_(n−1)     say a_n =cos θ_n   2cos^2  θ_n −1=cos θ_(n−1)   cos 2θ_n =cos θ_(n−1)   2θ_n =θ_(n−1)   θ_n =(θ_(n−1) /2)=(θ_(n−2) /2^2 )=...=(θ_1 /2^(n−1) )  a_1 =cos θ_1 =(√(1/2)) ⇒θ_1 =(π/4)=(π/2^2 )  θ_n =(θ_1 /2^(n−1) )=(π/2^(n+1) )  a_n =cos θ_n =cos (π/2^(n+1) )  a_1 a_2 ...a_n =cos (π/2^2 )cos (π/2^3 )...cos (π/2^(n+1) )  2sin (π/2^(n+1) )(a_1 a_2 ...a_n )=cos (π/2^2 )cos (π/2^3 )...sin (π/2^n )  2^2 sin (π/2^(n+1) )(a_1 a_2 ...a_n )=cos (π/2^2 )cos (π/2^3 )...sin (π/2^(n−1) )  ......  2^n sin (π/2^(n+1) )(a_1 a_2 ...a_n )=sin (π/2)=1  a_1 a_2 ...a_n =(1/( 2^n  sin (π/2^(n+1) )))  a_1 a_2 ...a_n =(2/π)×((π/2^(n+1) )/( sin (π/2^(n+1) )))  LHS=lim_(n→∞) (a_1 a_2 ...a_n )=(2/( π))
a1=12a2=12+1212an=12+12an12an21=an1sayan=cosθn2cos2θn1=cosθn1cos2θn=cosθn12θn=θn1θn=θn12=θn222==θ12n1a1=cosθ1=12θ1=π4=π22θn=θ12n1=π2n+1an=cosθn=cosπ2n+1a1a2an=cosπ22cosπ23cosπ2n+12sinπ2n+1(a1a2an)=cosπ22cosπ23sinπ2n22sinπ2n+1(a1a2an)=cosπ22cosπ23sinπ2n12nsinπ2n+1(a1a2an)=sinπ2=1a1a2an=12nsinπ2n+1a1a2an=2π×π2n+1sinπ2n+1LHS=limn(a1a2an)=2π
Commented by mathlove last updated on 01/Nov/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *