Menu Close

prove-that-lim-n-1-2-3-n-1-n-n-1-n-e-3-4-




Question Number 188826 by mathlove last updated on 08/Mar/23
prove that  lim_(n→∞) (((1! 2! 3!∙∙∙∙∙n!))^(1/(n(n+1))) /( (√n)))=e^((−3)/4)
$${prove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt[{{n}\left({n}+\mathrm{1}\right)}]{\mathrm{1}!\:\mathrm{2}!\:\mathrm{3}!\centerdot\centerdot\centerdot\centerdot\centerdot{n}!}}{\:\sqrt{{n}}}={e}^{\frac{−\mathrm{3}}{\mathrm{4}}} \\ $$
Commented by Frix last updated on 07/Mar/23
There is no x and why →0?
$$\mathrm{There}\:\mathrm{is}\:\mathrm{no}\:{x}\:\mathrm{and}\:\mathrm{why}\:\rightarrow\mathrm{0}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *