Menu Close

prove-that-lim-n-k-1-n-n-2-n-6-k-1-




Question Number 192274 by York12 last updated on 13/May/23
prove that lim_(n→∞) (Σ_(k=1) ^n (n^2 /( (√(n^6 +k)))))=1
provethatlimn(nk=1n2n6+k)=1
Answered by aleks041103 last updated on 14/May/23
Σ_(k=1) ^n (n^2 /( (√(n^6 +n))))<Σ_(k=1) ^n (n^2 /( (√(n^6 +k))))<Σ_(k=1) ^n (n^2 /( (√(n^6 +0))))  (n^3 /( n^3 (√(1+n^(−5) ))))<Σ_(k=1) ^n (n^2 /( (√(n^6 +k))))<(n^3 /n^3 )  ⇒(1/( (√(1+(1/n^5 )))))<Σ_(k=1) ^n (n^2 /( (√(n^6 +k))))<1  ⇒lim_(n→∞) (1/( (√(1+(1/n^5 )))))≤lim_(n→∞) (Σ_(k=1) ^n (n^2 /( (√(n^6 +k)))))≤1  ⇒1≤lim_(n→∞) (Σ_(k=1) ^n (n^2 /( (√(n^6 +k)))))≤1  ⇒lim_(n→∞) (Σ_(k=1) ^n (n^2 /( (√(n^6 +k)))))=1
nk=1n2n6+n<nk=1n2n6+k<nk=1n2n6+0n3n31+n5<nk=1n2n6+k<n3n311+1n5<nk=1n2n6+k<1limn11+1n5limn(nk=1n2n6+k)11limn(nk=1n2n6+k)1limn(nk=1n2n6+k)=1
Commented by York12 last updated on 14/May/23
  lim_(n→∞) [Σ_(k=1 ) ^n ((n^2 /( (√(n^6 +k)))))]=lim_(n→∞) [n^2 Σ_(k=1) ^n ((1/( (√(n^6 +k)))))]→[I]  Let T_k  =(1/( (√(n^6 +k))))   ⇛  k=(1/T_k )−n^6   I = lim_(n→∞) [n^2 Σ_(k=1) ^n ((1/( (√(n^6 +k)))))]  Σ_(k=1) ^n ((1/( (√(n^6 +(√(n^6 +(√(n^6 +(√(n^6 +...)))))))))))  = lim_(n→∞) [n^2 Σ_(k=1) ^n ((2/(1+(√(1+4n^6 )))))]=lim_(n→∞) [((2n^3 )/(1+(√(1+4n^6 ))))]   = (2/( (√4)))=1 → ( That′s it )                                         (BY YORK)
limn[nk=1(n2n6+k)]=limn[n2nk=1(1n6+k)][I]LetTk=1n6+kk=1Tkn6I=limn[n2nk=1(1n6+k)]nk=1(1n6+n6+n6+n6+)=limn[n2nk=1(21+1+4n6)]=limn[2n31+1+4n6]=24=1(Thatsit)(BYYORK)
Commented by York12 last updated on 14/May/23
actully I am a high school student in grade   10 and Iwas wondering where can I learn that  I hope if you can help me out with that
actullyIamahighschoolstudentingrade10andIwaswonderingwherecanIlearnthatIhopeifyoucanhelpmeoutwiththat
Commented by York12 last updated on 14/May/23
and I will be happy to hear your comment on my solution.
andIwillbehappytohearyourcommentonmysolution.
Commented by York12 last updated on 14/May/23
so intresting technique
sointrestingtechnique
Commented by York12 last updated on 14/May/23
my telegram :yorkgubler
mytelegram:yorkgubler

Leave a Reply

Your email address will not be published. Required fields are marked *