Menu Close

Prove-that-lim-n-n-0-t-n-n-e-t-dt-1-2-




Question Number 145399 by Willson last updated on 04/Jul/21
Prove that   lim_(n→+∞)   ∫^( n) _( 0)  (t^n /(n!)) e^(−t)  dt = (1/2)
$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow+\infty} {\boldsymbol{\mathrm{lim}}}\:\:\underset{\:\mathrm{0}} {\int}^{\:\boldsymbol{\mathrm{n}}} \:\frac{\boldsymbol{\mathrm{t}}^{\boldsymbol{\mathrm{n}}} }{\boldsymbol{\mathrm{n}}!}\:\boldsymbol{{e}}^{−\boldsymbol{\mathrm{t}}} \:\boldsymbol{\mathrm{dt}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by ArielVyny last updated on 04/Jul/21
∫_0 ^n (t^n /(n!))e^(−t) dt=(1/(n!))∫_0 ^(+∞) e^(−t) t^n dt(1/(n!))Γ(n+1)=((n!)/(n!))=1
$$\int_{\mathrm{0}} ^{{n}} \frac{{t}^{{n}} }{{n}!}{e}^{−{t}} {dt}=\frac{\mathrm{1}}{{n}!}\int_{\mathrm{0}} ^{+\infty} {e}^{−{t}} {t}^{{n}} {dt}\frac{\mathrm{1}}{{n}!}\Gamma\left({n}+\mathrm{1}\right)=\frac{{n}!}{{n}!}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *