Menu Close

Prove-that-lim-n-n-0-t-n-n-e-t-dt-1-2-




Question Number 145399 by Willson last updated on 04/Jul/21
Prove that   lim_(n→+∞)   ∫^( n) _( 0)  (t^n /(n!)) e^(−t)  dt = (1/2)
Provethatlimn+0ntnn!etdt=12
Answered by ArielVyny last updated on 04/Jul/21
∫_0 ^n (t^n /(n!))e^(−t) dt=(1/(n!))∫_0 ^(+∞) e^(−t) t^n dt(1/(n!))Γ(n+1)=((n!)/(n!))=1
0ntnn!etdt=1n!0+ettndt1n!Γ(n+1)=n!n!=1

Leave a Reply

Your email address will not be published. Required fields are marked *