Menu Close

prove-that-lim-n-n-1-2n-1-1-n-1-n-1-n-2n-1-1-n-n-2-e-2-




Question Number 182646 by mathlove last updated on 12/Dec/22
prove that  lim_(n→∞) [((((n+1)!∙(2n+1)!!))^(1/(n+1)) /(n+1))−(((n!∙(2n−1)!!))^(1/n) /n)]=(2/e^2 )
$${prove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\frac{\sqrt[{{n}+\mathrm{1}}]{\left({n}+\mathrm{1}\right)!\centerdot\left(\mathrm{2}{n}+\mathrm{1}\right)!!}}{{n}+\mathrm{1}}−\frac{\sqrt[{{n}}]{{n}!\centerdot\left(\mathrm{2}{n}−\mathrm{1}\right)!!}}{{n}}\right]=\frac{\mathrm{2}}{{e}^{\mathrm{2}} } \\ $$
Commented by mathlove last updated on 13/Dec/22
???
$$??? \\ $$
Commented by mathlove last updated on 13/Dec/22
prove that  lim_(n→∞) [((((n+1)!∙(2n+1)!!))^(1/(n+1)) /(n+1))−(((n!∙(2n−1)!!))^(1/n) /n)]=(2/e^2 )
$${prove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\frac{\sqrt[{{n}+\mathrm{1}}]{\left({n}+\mathrm{1}\right)!\centerdot\left(\mathrm{2}{n}+\mathrm{1}\right)!!}}{{n}+\mathrm{1}}−\frac{\sqrt[{{n}}]{{n}!\centerdot\left(\mathrm{2}{n}−\mathrm{1}\right)!!}}{{n}}\right]=\frac{\mathrm{2}}{{e}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *