Menu Close

Prove-that-lim-x-0-1-ax-1-b-1-x-a-b-




Question Number 44652 by rahul 19 last updated on 02/Oct/18
Prove that lim_(x→0)  (((1+ax)^(1/b) −1)/x) = (a/b).
$${Prove}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}}{{x}}\:=\:\frac{{a}}{{b}}. \\ $$
Commented by rahul 19 last updated on 02/Oct/18
without using L−hospital rule.
$${without}\:{using}\:{L}−{hospital}\:{rule}. \\ $$
Commented by maxmathsup by imad last updated on 02/Oct/18
we have (1+ax)^(1/b)   ∼1+(a/b)x   (x→0) ⇒  (1+ax)^(1/b)  −1 ∼(a/b)x  (x→0) ⇒(((1+ax)^(1/b)  −1)/x) ∼(a/b) ⇒  lim_(x→0)  (((1+ax)^(1/b)  −1)/x) =(a/b) .
$${we}\:{have}\:\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} \:\:\sim\mathrm{1}+\frac{{a}}{{b}}{x}\:\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow \\ $$$$\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} \:−\mathrm{1}\:\sim\frac{{a}}{{b}}{x}\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} \:−\mathrm{1}}{{x}}\:\sim\frac{{a}}{{b}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} \:−\mathrm{1}}{{x}}\:=\frac{{a}}{{b}}\:. \\ $$
Commented by rahul 19 last updated on 02/Oct/18
thanks prof Abdo.
$${thanks}\:{prof}\:{Abdo}. \\ $$
Commented by maxmathsup by imad last updated on 02/Oct/18
you are welcome sir.
$${you}\:{are}\:{welcome}\:{sir}. \\ $$
Answered by math1967 last updated on 02/Oct/18
x^(lim) →0 ((a{(1+ax)^(1/b) −1})/(ax))  a  ^(lim) x→0  (((1+ax)^(1/b) −1)/(ax))  (a/b) proved   [ ^(Lim) x→0 (((1+x)^n −1)/x) (  n=any rational..)                                              =n]
$$\overset{{lim}} {{x}}\rightarrow\mathrm{0}\:\frac{{a}\left\{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}\right\}}{{ax}} \\ $$$${a}\:\overset{{lim}} {\:}{x}\rightarrow\mathrm{0}\:\:\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}}{{ax}} \\ $$$$\frac{{a}}{{b}}\:{proved}\:\:\:\left[\overset{{Lim}} {\:}{x}\rightarrow\mathrm{0}\:\frac{\left(\mathrm{1}+{x}\right)^{{n}} −\mathrm{1}}{{x}}\:\left(\:\:{n}={any}\:{rational}..\right)\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={n}\right] \\ $$
Commented by rahul 19 last updated on 02/Oct/18
thanks sir.
$${thanks}\:{sir}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Oct/18
t=1+ax   x→0    t→1  lim_(t→1)  ((a(t^(1/b) −1))/(t−1))     a×(1/b)×(1)^((1/b)−1)   =(a/b)
$${t}=\mathrm{1}+{ax}\:\:\:{x}\rightarrow\mathrm{0}\:\:\:\:{t}\rightarrow\mathrm{1} \\ $$$$\underset{{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{a}\left({t}^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}\right)}{{t}−\mathrm{1}}\:\:\: \\ $$$${a}×\frac{\mathrm{1}}{{b}}×\left(\mathrm{1}\right)^{\frac{\mathrm{1}}{{b}}−\mathrm{1}} \\ $$$$=\frac{{a}}{{b}} \\ $$
Commented by rahul 19 last updated on 02/Oct/18
thanks sir.
$${thanks}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *