Menu Close

prove-that-lim-x-0-1-x-2-e-x-e-x-1-2-1-12-




Question Number 169711 by mnjuly1970 last updated on 06/May/22
      prove that:        lim_( x → 0) ( (1/x^( 2) )  − (e^( x) /((e^( x) −1 )^( 2) )) ) = (1/(12))
provethat:limx0(1x2ex(ex1)2)=112
Commented by infinityaction last updated on 06/May/22
i think question is wrong
ithinkquestioniswrong
Commented by cortano1 last updated on 07/May/22
no. the question right
no.thequestionright
Commented by infinityaction last updated on 07/May/22
thank you sir   got my mistake
thankyousirgotmymistake
Answered by qaz last updated on 07/May/22
L=lim_(x→0) ((1/x^2 )−(e^x /((e^x −1)^2 )))=lim_(x→0) ((e^(2x) −2e^x +1−x^2 e^x )/x^4 )  e^(2x) −2e^x +1−x^2 e^x   =(1+2x+(1/2)(2x)^2 +(1/6)(2x)^3 +(1/(24))(2x)^4 +...)−2(1+x+(1/2)x^2 +(1/6)x^3 +(1/(24))x^4 +...)+  1−x^2 (1+x+(1/2)x^2 +...)  =(((16)/(24))−(2/(24))−(1/2))x^4 +...=(1/(12))x^4 +o(x^4 )  ⇒L=lim_(x→0) (((1/(12))x^4 +o(x^4 ))/x^4 )=(1/(12))
L=limx0(1x2ex(ex1)2)=limx0e2x2ex+1x2exx4e2x2ex+1x2ex=(1+2x+12(2x)2+16(2x)3+124(2x)4+)2(1+x+12x2+16x3+124x4+)+1x2(1+x+12x2+)=(162422412)x4+=112x4+o(x4)L=limx0112x4+o(x4)x4=112
Answered by cortano1 last updated on 07/May/22
 lim_(x→0)  (((e^x −1)^2 −x^2 e^x )/(x^2 (e^x −1)^2 ))    = lim_(x→0)  (((1+x+(x^2 /2)+(x^3 /6)+O(x^3 )−1)^2 −x^2 (1+x+(1/2)x^2 +(1/6)x^3 +O(x^3 )))/(x^2 (1+x+(1/2)x^2 +(1/6)x^3 +O(x^3 )−1)^2 ))   = lim_(x→0)  ((x+(1/2)x^2 +(1/6)x^3 +...−(x^2 +x^3 +(1/2)x^4 +(1/6)x^5 +...))/(x^2 (x+(1/2)x^2 +(1/6)x^3 +...)^2 ))   = lim_(x→0)  (((1/(12))x^4 +O(x^5 ))/(x^4 +O(x^5 ))) = (1/(12))
limx0(ex1)2x2exx2(ex1)2=limx0(1+x+x22+x36+O(x3)1)2x2(1+x+12x2+16x3+O(x3))x2(1+x+12x2+16x3+O(x3)1)2=limx0x+12x2+16x3+(x2+x3+12x4+16x5+)x2(x+12x2+16x3+)2=limx0112x4+O(x5)x4+O(x5)=112

Leave a Reply

Your email address will not be published. Required fields are marked *