Menu Close

prove-that-lim-x-0-arcsin-x-1-x-2-ln-1-x-1-




Question Number 80000 by malwaan last updated on 30/Jan/20
prove that  lim_(x→0)  ((arcsin(x/( (√(1−x^2 )))))/(ln(1−x))) = −1
provethatlimx0arcsinx1x2ln(1x)=1
Commented by jagoll last updated on 30/Jan/20
sin y = (x/( (√(1−x^2 )))) ⇒(x^2 /(1−x^2 )) = sin^2 y  ((1−x^2 −1)/(1−x^2 ))=sin^2 y ⇒1−(1/(1−x^2 ))=sin^2 y  cos^2 y=(1/(1−x^2 )) ⇒1−x^2 =sec^2 y  1−x=((sec^2 y)/(1+x))
siny=x1x2x21x2=sin2y1x211x2=sin2y111x2=sin2ycos2y=11x21x2=sec2y1x=sec2y1+x
Commented by abdomathmax last updated on 30/Jan/20
let f(x)=((arcsin((x/( (√(1−x^2 ))))))/(ln(1−x)))  changement x=sint   give f(x)=((arcsin(tant))/(ln(1−sint)))=g(t)  x→0 ⇒t→0   ⇒ g(t)∼((arcsint)/(−t)) =−((arcsint)/t)  and lim_(t→0)  ((arsin(t))/t) = arcsin^′ (0)  we have  arcsin^′ (t) = (1/( (√(1−t^2 )))) ⇒arcsin^′ (0) =1 ⇒  lim_(t→0)  g(t)=−1 =lim_(x→0) f(x)
letf(x)=arcsin(x1x2)ln(1x)changementx=sintgivef(x)=arcsin(tant)ln(1sint)=g(t)x0t0g(t)arcsintt=arcsinttandlimt0arsin(t)t=arcsin(0)wehavearcsin(t)=11t2arcsin(0)=1limt0g(t)=1=limx0f(x)
Answered by Kamel Kamel last updated on 30/Jan/20
Ω=lim_(x→0) ((arcsin((x/( (√(1−x^2 ))))))/(Ln(1−x)))  Put: x=sin(t),x→0⇒t→0  Ω=lim_(x→0) ((arcsin((x/( (√(1−x^2 ))))))/(Ln(1−x)))=lim_(t→0) ((arcsin(tan(t)))/(Ln(1−sin(t))))=−lim((tan(t))/(sin(t)))=−1
Ω=limx0arcsin(x1x2)Ln(1x)Put:x=sin(t),x0t0Ω=limx0arcsin(x1x2)Ln(1x)=limt0arcsin(tan(t))Ln(1sin(t))=limtan(t)sin(t)=1
Commented by malwaan last updated on 31/Jan/20
thank you so much
thankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *