Menu Close

prove-that-lim-x-0-ln-x-ln-1-x-lim-x-1-ln-x-ln-1-x-




Question Number 34160 by candre last updated on 01/May/18
prove that  lim_(x→0^+ ) ln x∙ln (1+x)=lim_(x→1) ln x∙ln (1+x)
provethatlimlnx0+xln(1+x)=limlnx1xln(1+x)
Commented by tanmay.chaudhury50@gmail.com last updated on 01/May/18
Commented by tanmay.chaudhury50@gmail.com last updated on 01/May/18
see the graph LHS limit is zero also RHS limit  also zero
seethegraphLHSlimitiszeroalsoRHSlimitalsozero
Commented by abdo mathsup 649 cc last updated on 02/May/18
we have lim_(x→0^+ )   ln(x)ln(1+x)  =lim_(x→0^+ )   (xlnx)((ln(1+x))/x)=0 because lim_(x→0^+ )  xln(x)=0  lim_(x→0^+ )   ((ln(1+x))/x) = 1  from another side  lim_(x→1) ln(x).ln(1+x) =ln(1)ln(2)=0 because  the function ln(x) is continue at 1 and 2.
wehavelimx0+ln(x)ln(1+x)=limx0+(xlnx)ln(1+x)x=0becauselimx0+xln(x)=0limx0+ln(1+x)x=1fromanothersidelimx1ln(x).ln(1+x)=ln(1)ln(2)=0becausethefunctionln(x)iscontinueat1and2.
Answered by MJS last updated on 02/May/18
right side:  ln1=0  0ln2=0  left side:  e^(lnx ln(x+1)) =(x+1)^(lnx)   lim_(x→0^+ ) (x+1)^(lnx) =1^(−∞) =1 ⇒  ⇒ lim_(x→0^+ ) lnx ln(x+1)=0
rightside:ln1=00ln2=0leftside:elnxln(x+1)=(x+1)lnxlimx0+(x+1)lnx=1=1limlnx0+xln(x+1)=0

Leave a Reply

Your email address will not be published. Required fields are marked *