Menu Close

prove-that-lim-x-1-1-x-x-e-




Question Number 84637 by Rio Michael last updated on 14/Mar/20
prove that  lim_(x→∞)  (1 + (1/x))^x  =e
$$\mathrm{prove}\:\mathrm{that}\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\right)^{{x}} \:={e} \\ $$
Commented by ajfour last updated on 14/Mar/20
prove that  sin θ=(p/h) .
$${prove}\:{that}\:\:\mathrm{sin}\:\theta=\frac{{p}}{{h}}\:. \\ $$
Commented by mr W last updated on 14/Mar/20
in all cases: you can not prove, because  they are definitions.
$${in}\:{all}\:{cases}:\:{you}\:{can}\:{not}\:{prove},\:{because} \\ $$$${they}\:{are}\:{definitions}. \\ $$
Commented by mr W last updated on 14/Mar/20
haha, i was about to write:  prove that for a circle  ((perimeter)/(diameter))=π.
$${haha},\:{i}\:{was}\:{about}\:{to}\:{write}: \\ $$$${prove}\:{that}\:{for}\:{a}\:{circle}\:\:\frac{{perimeter}}{{diameter}}=\pi. \\ $$
Commented by Rio Michael last updated on 15/Mar/20
thank your sirs
$$\mathrm{thank}\:\mathrm{your}\:\mathrm{sirs} \\ $$
Commented by abdomathmax last updated on 16/Mar/20
this Q is done see the platform.
$${this}\:{Q}\:{is}\:{done}\:{see}\:{the}\:{platform}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *