Menu Close

prove-that-lim-x-1-1-x-x-e-




Question Number 121042 by bramlexs22 last updated on 05/Nov/20
prove that lim_(x→∞) (1+(1/x))^x = e
provethatlimx(1+1x)x=e
Answered by bobhans last updated on 05/Nov/20
Let w = lim_(x→∞) (1+(1/x))^x   then ln (w)= ln (lim_(x→∞) (1+(1/x))^x )   ln (w)=lim_(x→∞) (ln (1+(1/x))^x )   ln (w)= lim_(x→∞)  (x.ln (1+(1/x)))   ln (w)= lim_(x→∞) (x.[(1/x)−(1/(2x^2 ))+(1/(3x^3 ))−(1/(4x^4 ))+... ])   ln (w)= lim_(x→∞) (1−(1/(2x))+(1/(3x^2 ))−(1/(4x^3 ))+...)   ln (w) = 1 ⇒w = e^1  = e.
Letw=limx(1+1x)xthenln(w)=ln(limx(1+1x)x)ln(w)=limx(ln(1+1x)x)ln(w)=limx(x.ln(1+1x))ln(w)=limx(x.[1x12x2+13x314x4+])ln(w)=limx(112x+13x214x3+)ln(w)=1w=e1=e.
Answered by Dwaipayan Shikari last updated on 05/Nov/20
lim_(x→∞) (1+(1/x))^x   =1+(x/x)+((x(x−1))/(2!x^2 ))+((x(x−1)(x−2))/(3!x^3 ))+...  =1+(1/(1!))+(1/(2!))+(1/(3!))+...  =Σ_(n=0) ^∞ (1/(n!))=e
limx(1+1x)x=1+xx+x(x1)2!x2+x(x1)(x2)3!x3+=1+11!+12!+13!+=n=01n!=e

Leave a Reply

Your email address will not be published. Required fields are marked *