Menu Close

prove-that-lim-x-n-2-1-cos-1-n-1-cos-1-n-1-cos-1-n-1-2-




Question Number 82160 by M±th+et£s last updated on 18/Feb/20
prove that  lim_(x→∞)  n^2  (√((1−cos((1/n))(√((1−cos(1/n))(√((1−cos(1/n))...)))))) =(1/2)
provethatlimxn2(1cos(1n)(1cos1n)(1cos1n)=12
Answered by MJS last updated on 18/Feb/20
w=(√((1−cos (1/n))(√((1−cos (1/n))(√(...))))))  w^2 =(1−cos (1/n))w ⇒ w=0∨w=1−cos (1/n)  ...=lim_(n→∞)  n^2 (1−cos (1/n))  let n=(1/k)  lim_(k→0)  ((1−cos k)/k^2 ) =lim_(k→0)  (((d^2 /dk^2 )[1−cos k])/((d^2 /dk^2 )[k^2 ])) =  =lim_(k→0)  ((cos k)/2) =(1/2)
w=(1cos1n)(1cos1n)w2=(1cos1n)ww=0w=1cos1n=limnn2(1cos1n)letn=1klimk01coskk2=limk0d2dk2[1cosk]d2dk2[k2]==limk0cosk2=12
Answered by mr W last updated on 18/Feb/20
1−cos (1/n)=2 sin^2  (1/(2n))  lim_(n→∞)  n^2  (√((1−cos((1/n))(√((1−cos(1/n))(√((1−cos(1/n))...))))))   =lim_(n→∞)  n^2  (2 sin^2  (1/(2n)))^((1/2)+(1/4)+(1/8)+(1/(16))+...)   =lim_(n→∞)  n^2  (2 sin^2  (1/(2n)))^((1/2)×(1/(1−(1/2))))   =lim_(n→∞)  n^2  (2 sin^2  (1/(2n)))  =lim_(n→∞)  (1/2)(((sin (1/(2n)))/(1/(2n))))^2   =(1/2)×1=(1/2)
1cos1n=2sin212nlimnn2(1cos(1n)(1cos1n)(1cos1n)=limnn2(2sin212n)12+14+18+116+=limnn2(2sin212n)12×1112=limnn2(2sin212n)=limn12(sin12n12n)2=12×1=12

Leave a Reply

Your email address will not be published. Required fields are marked *