Menu Close

prove-that-ln-z-0-1-z-1-1-t-z-1-dt-




Question Number 54371 by maxmathsup by imad last updated on 02/Feb/19
prove that ln(z) = ∫_0 ^1   ((z−1)/(1+t(z−1)))dt .
$${prove}\:{that}\:{ln}\left({z}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{z}−\mathrm{1}}{\mathrm{1}+{t}\left({z}−\mathrm{1}\right)}{dt}\:. \\ $$
Commented by maxmathsup by imad last updated on 02/Feb/19
z is a complex number .
$${z}\:{is}\:{a}\:{complex}\:{number}\:. \\ $$
Answered by Smail last updated on 02/Feb/19
let  u=t(z−1)⇒du=(z−1)dt  ∫_0 ^1 ((z−1)/(1+t(z−1)))dt=∫_0 ^(z−1) (du/(1+u))=[ln∣1+u∣]_0 ^(z−1)   =ln∣1+z−1∣=ln∣z∣
$${let}\:\:{u}={t}\left({z}−\mathrm{1}\right)\Rightarrow{du}=\left({z}−\mathrm{1}\right){dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{z}−\mathrm{1}}{\mathrm{1}+{t}\left({z}−\mathrm{1}\right)}{dt}=\int_{\mathrm{0}} ^{{z}−\mathrm{1}} \frac{{du}}{\mathrm{1}+{u}}=\left[{ln}\mid\mathrm{1}+{u}\mid\right]_{\mathrm{0}} ^{{z}−\mathrm{1}} \\ $$$$={ln}\mid\mathrm{1}+{z}−\mathrm{1}\mid={ln}\mid{z}\mid \\ $$
Commented by Abdo msup. last updated on 03/Feb/19
sir what do you work in usa...
$${sir}\:{what}\:{do}\:{you}\:{work}\:{in}\:{usa}… \\ $$
Commented by Smail last updated on 03/Feb/19
I am still studying  and my major is   electrical engineering
$${I}\:{am}\:{still}\:{studying}\:\:{and}\:{my}\:{major}\:{is}\: \\ $$$${electrical}\:{engineering} \\ $$
Commented by rahul 19 last updated on 03/Feb/19
wow! which university?
$${wow}!\:{which}\:{university}? \\ $$
Commented by maxmathsup by imad last updated on 03/Feb/19
good luck sir Smail...i hoppe to visit usa somedays...
$${good}\:{luck}\:{sir}\:{Smail}…{i}\:{hoppe}\:{to}\:{visit}\:{usa}\:{somedays}… \\ $$
Commented by Smail last updated on 03/Feb/19
Thank you
$${Thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *