Menu Close

prove-that-log-1-3-3log-1-




Question Number 127363 by mohammad17 last updated on 29/Dec/20
prove that log(−1)^3 =3log(−1) ?
$${prove}\:{that}\:{log}\left(−\mathrm{1}\right)^{\mathrm{3}} =\mathrm{3}{log}\left(−\mathrm{1}\right)\:? \\ $$
Commented by mohammad17 last updated on 29/Dec/20
?????
$$????? \\ $$
Commented by mr W last updated on 29/Dec/20
in C we have always  log a^b =b log a
$${in}\:\mathbb{C}\:{we}\:{have}\:{always} \\ $$$$\mathrm{log}\:{a}^{{b}} ={b}\:\mathrm{log}\:{a} \\ $$
Commented by mohammad17 last updated on 29/Dec/20
Yes,my techer,but our doctor wants to  prove it in steps
$${Yes},{my}\:{techer},{but}\:{our}\:{doctor}\:{wants}\:{to} \\ $$$${prove}\:{it}\:{in}\:{steps} \\ $$
Answered by ebi last updated on 29/Dec/20
let say:  z=log(−1)  (−1)=e^z −−−take exponent on both side  (−1)^3 =(e^z )^3 −−−take power 3 on both side  (−1)^3 =e^(3z)   log(−1)^3 =3z−−−take log on both side  log(−1)^3 =3 log (−1)−−−substitute z=log(−1)    −−−Generalize−−−  m=log_a (x)  x=a^m −−−convert to exponential form  x^n =(a^m )^n −−−take power n on both side  x^n =a^(mn)   log_a (x)^n =mn −−− convert to logarithm form  log_a (x)^n =n log_a (x) −−− substitute m=log_a (x)
$${let}\:{say}: \\ $$$${z}={log}\left(−\mathrm{1}\right) \\ $$$$\left(−\mathrm{1}\right)={e}^{{z}} −−−{take}\:{exponent}\:{on}\:{both}\:{side} \\ $$$$\left(−\mathrm{1}\right)^{\mathrm{3}} =\left({e}^{{z}} \right)^{\mathrm{3}} −−−{take}\:{power}\:\mathrm{3}\:{on}\:{both}\:{side} \\ $$$$\left(−\mathrm{1}\right)^{\mathrm{3}} ={e}^{\mathrm{3}{z}} \\ $$$${log}\left(−\mathrm{1}\right)^{\mathrm{3}} =\mathrm{3}{z}−−−{take}\:{log}\:{on}\:{both}\:{side} \\ $$$${log}\left(−\mathrm{1}\right)^{\mathrm{3}} =\mathrm{3}\:{log}\:\left(−\mathrm{1}\right)−−−{substitute}\:{z}={log}\left(−\mathrm{1}\right) \\ $$$$ \\ $$$$−−−{Generalize}−−− \\ $$$${m}={log}_{{a}} \left({x}\right) \\ $$$${x}={a}^{{m}} −−−{convert}\:{to}\:{exponential}\:{form} \\ $$$${x}^{{n}} =\left({a}^{{m}} \right)^{{n}} −−−{take}\:{power}\:{n}\:{on}\:{both}\:{side} \\ $$$${x}^{{n}} ={a}^{{mn}} \\ $$$${log}_{{a}} \left({x}\right)^{{n}} ={mn}\:−−−\:{convert}\:{to}\:{logarithm}\:{form} \\ $$$${log}_{{a}} \left({x}\right)^{{n}} ={n}\:{log}_{{a}} \left({x}\right)\:−−−\:{substitute}\:{m}={log}_{{a}} \left({x}\right) \\ $$
Commented by mr W last updated on 29/Dec/20
z=log(−1)≠log(i)
$${z}={log}\left(−\mathrm{1}\right)\neq{log}\left({i}\right) \\ $$
Commented by mohammad17 last updated on 29/Dec/20
can you give me stebs
$${can}\:{you}\:{give}\:{me}\:{stebs} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *