Menu Close

prove-that-log-2-2-2-n-1-n-n-1-2-2-n-log-2-n-1-n-n-1-3-2-n-n-1-n-n-1-4-2-n-23-8-6-2-2-3-1-18-log-6-2-m-A-




Question Number 155136 by amin96 last updated on 25/Sep/21
prove that  ((log^2 (2))/2)Σ_(n=1) ^∞ ((𝛟(n))/((n+1)^2 2^n ))+log(2)Σ_(n=1) ^∞ ((𝛟(n))/((n+1)^3 2^n ))+Σ_(n=1) ^∞ ((𝛟(n))/((n+1)^4 2^n ))=  =((23)/8)𝛇(6)−2𝛇^2 (3)−(1/(18))log^6 (2)  m.A
$$\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\frac{\boldsymbol{\mathrm{log}}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left(\boldsymbol{{n}}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{2}} \mathrm{2}^{\boldsymbol{{n}}} }+\boldsymbol{\mathrm{log}}\left(\mathrm{2}\right)\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left({n}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{3}} \mathrm{2}^{\boldsymbol{{n}}} }+\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left({n}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{4}} \mathrm{2}^{\boldsymbol{{n}}} }= \\ $$$$=\frac{\mathrm{23}}{\mathrm{8}}\boldsymbol{\zeta}\left(\mathrm{6}\right)−\mathrm{2}\boldsymbol{\zeta}^{\mathrm{2}} \left(\mathrm{3}\right)−\frac{\mathrm{1}}{\mathrm{18}}\boldsymbol{\mathrm{log}}^{\mathrm{6}} \left(\mathrm{2}\right) \\ $$$$\boldsymbol{{m}}.\boldsymbol{{A}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *