Menu Close

prove-that-n-0-1-n-n-1-ln2-




Question Number 161755 by mkam last updated on 22/Dec/21
prove that Σ_(n=0) ^∞  (((−1)^n )/(n+1)) = ln2
provethatn=0(1)nn+1=ln2
Answered by FelipeLz last updated on 22/Dec/21
f(x) = ln(x+1)       f′(x) = (1/(x+1))       f′′(x) = −(1/((x+1)^2 ))       f′′′(x) = (2/((x+1)^3 ))       f′′′′(x) = −(6/((x+1)^4 ))       ⋮        f^((k)) (x) = (−1)^(k−1) (((k−1)!)/((x+1)^k ))    f(x) = Σ_(k=0) ^∞ ((f^((k)) (a))/(k!))(x−a)^k   a = 0 ⇒  { ((f(a) = 0)),((f^((k)) (a) = (−1)^(k−1) (k−1)!)) :}   ∴  f(x) = Σ_(k=1) ^∞ (((−1)^(k−1) (k−1)!)/(k!))x^k  = Σ_(k=1) ^∞ (((−1)^(k−1) x^k )/k)  k = n+1 ⇒ f(x) = Σ_(n=0) ^∞ (((−1)^n x^(n+1) )/(n+1))  ln(2) = f(1) = Σ_(n=0) ^∞ (((−1)^n (1)^(n+1) )/(n+1)) = Σ_(n=0) ^∞ (((−1)^n )/(n+1))
f(x)=ln(x+1)f(x)=1x+1f(x)=1(x+1)2f(x)=2(x+1)3f(x)=6(x+1)4f(k)(x)=(1)k1(k1)!(x+1)kf(x)=k=0f(k)(a)k!(xa)ka=0{f(a)=0f(k)(a)=(1)k1(k1)!f(x)=k=1(1)k1(k1)!k!xk=k=1(1)k1xkkk=n+1f(x)=n=0(1)nxn+1n+1ln(2)=f(1)=n=0(1)n(1)n+1n+1=n=0(1)nn+1
Answered by Ar Brandon last updated on 22/Dec/21
S=Σ_(n=0) ^∞ (((−1)^n )/(n+1))=Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^n dx     =Σ_(n=0) ^∞ ∫_0 ^1 (−x)^n dx=∫_0 ^1 Σ_(n=0) ^∞ (−x)^n dx     =∫_0 ^1 (1/(1+x))dx=[ln(1+x)]_0 ^1 =ln(2)−ln(1)      ⇒ determinant (((Σ_(n=0) ^∞ (((−1)^n )/(n+1))=ln(2))))
S=n=0(1)nn+1=n=0(1)n01xndx=n=001(x)ndx=01n=0(x)ndx=0111+xdx=[ln(1+x)]01=ln(2)ln(1)n=0(1)nn+1=ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *