prove-that-n-0-1-n-n-1-ln2- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 161755 by mkam last updated on 22/Dec/21 provethat∑∞n=0(−1)nn+1=ln2 Answered by FelipeLz last updated on 22/Dec/21 f(x)=ln(x+1)f′(x)=1x+1f″(x)=−1(x+1)2f‴(x)=2(x+1)3f⁗(x)=−6(x+1)4⋮f(k)(x)=(−1)k−1(k−1)!(x+1)kf(x)=∑∞k=0f(k)(a)k!(x−a)ka=0⇒{f(a)=0f(k)(a)=(−1)k−1(k−1)!∴f(x)=∑∞k=1(−1)k−1(k−1)!k!xk=∑∞k=1(−1)k−1xkkk=n+1⇒f(x)=∑∞n=0(−1)nxn+1n+1ln(2)=f(1)=∑∞n=0(−1)n(1)n+1n+1=∑∞n=0(−1)nn+1 Answered by Ar Brandon last updated on 22/Dec/21 S=∑∞n=0(−1)nn+1=∑∞n=0(−1)n∫01xndx=∑∞n=0∫01(−x)ndx=∫01∑∞n=0(−x)ndx=∫0111+xdx=[ln(1+x)]01=ln(2)−ln(1)⇒∑∞n=0(−1)nn+1=ln(2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-161748Next Next post: tan-x-x-dx-x-tan-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.