Menu Close

Prove-that-n-0-2-n-1-2-n-2-2-n-n-2-2n-n-




Question Number 166110 by naka3546 last updated on 13/Feb/22
Prove  that    ((( n)),(( 0)) )^2  +  ((( n)),(( 1)) )^2  +  ((( n)),(( 2)) )^2  + …+  ((( n)),(( n)) )^2   =   ((( 2n)),((  n)) )
Provethat(n0)2+(n1)2+(n2)2++(nn)2=(2nn)
Answered by qaz last updated on 13/Feb/22
 ((n),(0) )^2 + ((n),(1) )^2 +...+ ((n),(n) )^2   =Σ_(k=0) ^n  ((n),(k) )^2   =Σ_(k=0) ^n  ((n),(k) ) ((n),((n−k)) )  =[z^n ](1+z)^n Σ_(k=0) ^n  ((n),(k) )z^k   =[z^n ](1+z)^(2n)   = (((2n)),(n) )
(n0)2+(n1)2++(nn)2=nk=0(nk)2=nk=0(nk)(nnk)=[zn](1+z)nnk=0(nk)zk=[zn](1+z)2n=(2nn)
Commented by naka3546 last updated on 13/Feb/22
thank you , sir.
thankyou,sir.

Leave a Reply

Your email address will not be published. Required fields are marked *