Menu Close

Prove-that-n-0-3-tan-2-2n-1-pi-16-28-




Question Number 20091 by Tinkutara last updated on 21/Aug/17
Prove that Σ_(n=0) ^3 tan^2  (((2n + 1)π)/(16)) = 28.
Provethat3n=0tan2(2n+1)π16=28.
Answered by ajfour last updated on 21/Aug/17
((sin^2 A)/(cos^2 A))+((sin^2 B)/(cos^2 B))=((sin^2 Acos^2 B+cos^2 Asin^2 B)/(cos^2 Acos^2 B))  =(([sin (A+B)+sin (A−B)]^2 +[sin (A+B)−sin (A−B)]^2 )/([cos (A+B)+cos (A−B)]^2 ))  =((2[sin^2 (A+B)+sin^2 (A−B)])/([cos (A+B)+cos (A−B)]^2 ))  For A=(π/(16))  , B=((7π)/(16))   ;   C=((3π)/(16)) , D=((5π)/(16))  sin (A+B)= sin (C+D)=1   ;   cos (A+B)= cos (C+D)= 0 , hence  Σtan^2 (((2n+1)π)/(16)) =       ((2[1+sin^2  ((3π)/8)])/(cos^2  ((3π)/8))) + ((2[1+sin^2 (π/8)])/(cos^2 (π/8)))    = ((4+4sin^2 ((3π)/8))/(2cos^2  ((3π)/8))) + ((4+4sin^2 (π/8))/(2cos^2 (π/8)))    =((4+2−2cos ((3π)/4))/(1+cos ((3π)/4))) + ((4+2−2cos (π/4))/(1+cos (π/4)))    =((6+(√2))/((1−(1/( (√2)))))) + ((6−(√2))/((1+(1/( (√2)))))) =((6(√2)+2)/( (√2)−1))+((6(√2)−2)/( (√2)+1))    =(12+6(√2)+2(√2)+2)+(12−6(√2)−2(√2)+2)   = 28 .
sin2Acos2A+sin2Bcos2B=sin2Acos2B+cos2Asin2Bcos2Acos2B=[sin(A+B)+sin(AB)]2+[sin(A+B)sin(AB)]2[cos(A+B)+cos(AB)]2=2[sin2(A+B)+sin2(AB)][cos(A+B)+cos(AB)]2ForA=π16,B=7π16;C=3π16,D=5π16sin(A+B)=sin(C+D)=1;cos(A+B)=cos(C+D)=0,henceΣtan2(2n+1)π16=2[1+sin23π8]cos23π8+2[1+sin2π8]cos2π8=4+4sin23π82cos23π8+4+4sin2π82cos2π8=4+22cos3π41+cos3π4+4+22cosπ41+cosπ4=6+2(112)+62(1+12)=62+221+6222+1=(12+62+22+2)+(126222+2)=28.
Commented by Tinkutara last updated on 21/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *