Menu Close

prove-that-n-1-1-2n-2n-1-ln2-




Question Number 90562 by Tony Lin last updated on 24/Apr/20
prove that  Σ_(n=1) ^∞ (1/(2n(2n−1)))=ln2
$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}={ln}\mathrm{2} \\ $$
Commented by mathmax by abdo last updated on 24/Apr/20
let S_n  =Σ_(k=1) ^n  (1/(2k(2k−1))) ⇒ S_n =Σ_(k=1) ^n ((1/(2k−1))−(1/(2k)))  =Σ_(k=1) ^n  (1/(2k−1))−(1/2)Σ_(k=1) ^n  (1/k)  we have  Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=1) ^n  (1/(2k−1)) =1+(1/3)+(1/5)+...+(1/(2n−1)) =1+(1/2)+(1/3)+...+(1/(2n−1))+(1/(2n))  −(1/2)−(1/4)−....−(1/(2n)) =H_(2n) −(1/2)H_n  ⇒  S_n =H_(2n) −(1/2)H_n −(1/2)H_n =H_(2n) −H_n =ln(2n)+γ +o((1/(2n)))  −ln(n)−γ−o((1/n)) =ln(2)+o((1/(2n)))−o((1/n))→ln(2) (n→+∞) ⇒  Σ_(n=1) ^∞  (1/(2n(2n−1))) =lim_(n→+∞)  S_n =ln(2)
$${let}\:{S}_{{n}} \:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}\left(\mathrm{2}{k}−\mathrm{1}\right)}\:\Rightarrow\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{k}}\right) \\ $$$$=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:\:{we}\:{have} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+…+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}{n}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}−….−\frac{\mathrm{1}}{\mathrm{2}{n}}\:={H}_{\mathrm{2}{n}} −\frac{\mathrm{1}}{\mathrm{2}}{H}_{{n}} \:\Rightarrow \\ $$$${S}_{{n}} ={H}_{\mathrm{2}{n}} −\frac{\mathrm{1}}{\mathrm{2}}{H}_{{n}} −\frac{\mathrm{1}}{\mathrm{2}}{H}_{{n}} ={H}_{\mathrm{2}{n}} −{H}_{{n}} ={ln}\left(\mathrm{2}{n}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right) \\ $$$$−{ln}\left({n}\right)−\gamma−{o}\left(\frac{\mathrm{1}}{{n}}\right)\:={ln}\left(\mathrm{2}\right)+{o}\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right)−{o}\left(\frac{\mathrm{1}}{{n}}\right)\rightarrow{ln}\left(\mathrm{2}\right)\:\left({n}\rightarrow+\infty\right)\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}\:={lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} ={ln}\left(\mathrm{2}\right) \\ $$
Commented by Tony Lin last updated on 25/Apr/20
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *